Генеративные адверсарные сети (GAN) произвели революцию в искусственном интеллекте, создавая реалистичные изображения и языковые модели, но их понимание может быть сложным. Эта статья упрощает GAN, фокусируясь на генерации синтетических данных математических функций, и объясняет различие между дискриминантными и генеративными моделями, которые составляют основу GAN.
Генеративные адверсарные сети (GAN) привлекли к себе внимание благодаря своей способности генерировать реалистичные синтетические данные, а также благодаря их неправомерному использованию для создания глубоких подделок. Уникальная архитектура GAN включает в себя генеративную сеть и сеть противника, которые обучаются для достижения противоположных целей с помощью двухуровневой оптимизации.