Новостная лента об искусственном интеллекте и машинном обучении

Главные новости и публикации каждый день! Будьте на шаг впереди: узнавайте первыми про новые идеи, тренды и инновации в сфере технологий.

Підвищення ефективності ML за допомогою Sprinklr на AWS Graviton3

Sprinklr використовує ШІ для покращення клієнтського досвіду, досягнувши 20% підвищення пропускної здатності за допомогою AWS Graviton3 для економічно ефективного ML-висновку. Тисячі серверів налаштовують і обслуговують понад 750 моделей ШІ по 60+ вертикалях, обробляючи 10 мільярдів прогнозів щодня.

Освоїти AWS Trainium та Inferentia з Neuron DLAMI

Випуск AWS Neuron 2.18 дозволяє запускати DLAMI та DLC в той самий день, що і реліз Neuron SDK, що спрощує налаштування середовища глибокого навчання. Новий Neuron Multi-Framework DLAMI для Ubuntu 22 спрощує доступ до популярних фреймворків ML, покращуючи користувацький досвід та продуктивність.

Освоєння контролю Монте-Карло

Використання алгоритмів Монте-Карло в навчанні з підкріпленням для оптимізації стратегій у складних середовищах. Спеціальні методи, такі як політика ε-жадібності, покращують ефективність навчання та адаптивність до невідомих умов.

Ефективна генерація коду за допомогою Code Llama 70B та Mixtral 8x7B

Code Llama 70B та Mixtral 8x7B - це передові моделі великих мов для генерації та розуміння коду, що мають мільярди параметрів. Розроблені компаніями Meta та Mistral AI, ці моделі пропонують неперевершену продуктивність, взаємодію з природною мовою та підтримку довготривалого контексту, революціонізуючи кодування за допомогою ШІ.

Разблокирование процесса привлечения клиентов с помощью науки о данных в электронной коммерции

Предприятия электронной коммерции могут решить проблемы с рекламой, используя науку о данных для оптимизации алгоритмов рекламных платформ. Понимание принципов работы таких платформ, как Meta, поможет улучшить привлечение клиентов и снизить расходы.

ИИ революционизирует открытие антибиотиков

Ученые используют алгоритм для изучения глобального микробиома и обнаруживают около 1 миллиона новых молекул для потенциальных антибиотиков. Прорывное исследование, опубликованное в журнале Cell, демонстрирует влияние искусственного интеллекта на изучение антибиотикорезистентности под руководством Сезара де ла Фуэнте из Пенсильванского университета.

Революционное повышение благосостояния сотрудников с помощью искусственного интеллекта и Amazon SageMaker

Психическое здоровье сотрудников имеет решающее значение в современном корпоративном мире. Amazon использует SageMaker Canvas для оценки психического здоровья, создавая благоприятную рабочую среду.

Освоение PRISM-Rules с помощью Python

PRISM, система индукции правил, создает краткие, интерпретируемые правила для моделей классификации в машинном обучении. Она предлагает как глобальные, так и локальные объяснения, что делает ее ценным инструментом для понимания закономерностей данных.

Расширение геномных языковых моделей с помощью AWS HealthOmics и SageMaker

Геномные языковые модели, такие как HyenaDNA, используют архитектуру трансформаторов для интерпретации языка ДНК, что позволяет использовать их в геномике, здравоохранении и сельском хозяйстве. Хранилище AWS HealthOmics и Amazon Sagemaker обеспечивают экономически эффективное обучение и развертывание этих моделей, стимулируя инновации в области точной медицины и биотехнологий.

Разблокирование эффективности: Сила CI/CD в машинном обучении

Непрерывная интеграция (CI) и непрерывная поставка (CD) преобразуют разработку машинного обучения (ML), способствуя сотрудничеству, повышению качества кода и раннему обнаружению проблем. Автоматизированные процессы в MLOps обеспечивают стабильную работу модели и ускоряют итерации для эффективной разработки ML-моделей.

Разблокировка самовнушения: Разбор кода

Крупные языковые модели, такие как GPT и BERT, опираются на архитектуру Transformer и механизм самовнимания для создания контекстуально насыщенных вкраплений, что произвело революцию в НЛП. Статические вкрапления, такие как word2vec, не справляются с захватом контекстуальной информации, что подчеркивает важность динамических вкраплений в языковых моделях.

Оптимизация порогов принятия решений с помощью scikit-learn

Новый TunedThresholdClassifierCV в scikit-learn 1.5 оптимизирует пороги принятия решений для повышения производительности модели в задачах бинарной классификации. Он помогает специалистам по исследованию данных улучшать модели и согласовывать их с бизнес-целями путем точной настройки пороговых значений на основе таких метрик, как F1 score.

BERT Demystified: Полное руководство с кодом

BERT, разработанная Google AI Language, - это новаторская модель большого языка для обработки естественного языка. Ее архитектура и фокус на понимании естественного языка изменили ландшафт НЛП, вдохновив такие модели, как RoBERTa и DistilBERT.

Усиление NLP-интерпретации на AWS Graviton с помощью ONNX Runtime

ONNX Runtime на AWS Graviton3 повышает производительность ML-выводов на 65% благодаря оптимизированным ядрам GEMM. Бэкэнд MLAS обеспечивает ускорение операторов глубокого обучения для повышения производительности.

Высвобождение творческого потенциала ИИ с помощью Amazon Ads и SageMaker

Amazon Ads использует искусственный интеллект, чтобы помочь рекламодателям создать визуально насыщенный потребительский опыт, быстро и легко генерируя изображения товаров. Рекламодатели могут настраивать изображения товаров, не обладая техническими знаниями, что облегчает охват желаемой аудитории и повышает эффективность бизнеса.

Уроки кагглинга: Год спустя

Соревнования Kaggle имеют решающее значение для продвижения и успеха, требуя оригинальных стратегий, чтобы выделиться. Одни только общественные блокноты могут не привести к золоту, ведь для победы необходимы креативные идеи.

Расшифровка алгоритма kNN: объяснение ikNN

Интерпретируемые модели, такие как XGBoost, CatBoost и LGBM, обеспечивают прозрачность, четко объясняя прогнозы. Методы объяснимого искусственного интеллекта (XAI) обеспечивают понимание, но не могут сравниться по точности с моделями «черного ящика».

Самый дальний центроид: Обнаружение аномалий в данных с помощью C#

Новый алгоритм обнаружения аномалий в данных "Самый дальний центроид" использует категориальные переменные для обнаружения аномалий, а не только числовые данные. Для обнаружения аномалий вычисляются центроиды для консервативных, умеренных и либеральных групп.

ИИ повышает эффективность исследований в области высокопроизводительных вычислений

Генеративный ИИ ускоряет работу HPC в Sandia Labs, используя RAG для улучшения генерации кода Kokkos. CorrDiff от NVIDIA улучшает прогнозы погоды: Spire и Meteomatics используют эту технологию для повышения точности и эффективности.

Революция в области клинических отчетов с помощью искусственного интеллекта

Amazon Bedrock представляет новые сервисы и базовые модели от ведущих компаний в области ИИ, предлагая возможности генеративного ИИ с обеспечением безопасности и конфиденциальности. Методы оперативной инженерии улучшают производительность LLM в задачах обобщения медицинской информации, оцениваемых с помощью метрики ROUGE.

Ускорьте свой путь в области машинного обучения с помощью AWS DeepRacer

AWS DeepRacer демократизирует образование в области ML, предлагая практический подход к изучению основ ML и соревнованиям в глобальной гоночной лиге. JPMorgan Chase проводит женскую лигу AWS DeepRacer, демонстрируя стремление к расширению возможностей команд и стимулированию инноваций в области ИИ и ML.

Освоение многоклассовой классификации с помощью LightGBM

Статья о LightGBM для многоклассовой классификации в журнале Microsoft Visual Studio Magazine демонстрирует ее мощь и простоту использования, а также рассказывает об оптимизации параметров и ее конкурентных преимуществах в недавних конкурсах. LightGBM, основанная на древовидной системе, превосходит всех в конкурсах, что делает ее лучшим выбором для точных и эффективных задач многоклассовой кла...

Hug it Out: Классификация текста с помощью Amazon SageMaker JumpStart

Amazon SageMaker JumpStart предлагает предварительно обученные модели и алгоритмы для быстрого обучения и развертывания ML-моделей, включая классификацию текста с помощью Hugging Face. Трансферное обучение позволяет точно настраивать предварительно обученные модели на пользовательских наборах данных для эффективного обучения даже при ограниченном количестве данных.

Преобразование процесса удержания клиентов с помощью Amazon SageMaker

Dialog Axiata борется с высоким уровнем оттока абонентов с помощью инновационной модели прогнозирования оттока абонентов домашнего широкополосного доступа, использующей передовые модели искусственного интеллекта. Стратегическое использование сервисов AWS повышает эффективность работы и приложений AI/ML, что приводит к значительному прогрессу в усилиях по цифровой трансформации.

Оптимизация управления ML: Amazon SageMaker + DataZone

Amazon SageMaker и Amazon DataZone объединились, чтобы упростить управление ML, сотрудничество и управление данными для предприятий. Новые возможности включают управление проектами, инфраструктурой и активами для упрощения жизненного цикла ОД.

Оптимизация анализа трафика с помощью PCA и K-Means в Python

PCA используется для снижения размерности и кластеризации станций Taipei MRT на основе данных о почасовом трафике. Анализ моделей движения и кластеризация выявляют сходство в пропорциях пассажиров в течение дня.

Революционный поиск видео с Veritone и Amazon AI

Veritone, калифорнийская компания, специализирующаяся на искусственном интеллекте, предлагает мощные ИИ-решения для обработки мультимедиа и не только. Они расширяют возможности поиска медиафайлов с помощью новых методов искусственного интеллекта для улучшения пользовательского опыта.

Революционизируйте совещания: Повышение продуктивности с помощью автоматических резюме

Виртуальные деловые совещания не заставят себя ждать: ожидается, что к 2024 году 41 % из них будут гибридными или виртуальными. Автоматизируйте резюме совещаний с помощью искусственного интеллекта для эффективного сосредоточения и повышения производительности.

Освоение MLOps: версионирование данных и моделей

Контроль версий необходим как в программной инженерии, так и в машинном обучении, причем версионирование данных и моделей играет важнейшую роль. Он обеспечивает такие преимущества, как прослеживаемость, воспроизводимость, откат, отладка и совместная работа.

Снижение модельного риска в финансах

Управление модельными рисками (MRM) в финансовой сфере имеет решающее значение для управления рисками, связанными с использованием моделей машинного обучения для принятия решений в финансовых учреждениях. Weight & Biases может повысить прозрачность и скорость рабочего процесса, снизив вероятность значительных финансовых потерь.

Unlocking Insights: LLM и Amazon SageMaker JumpStart

LLM позволяют получать самые современные результаты при минимальном количестве данных. Amazon SageMaker JumpStart упрощает тонкую настройку и развертывание моделей для задач NLP.

Взламывая код: ИИ в выявлении банковского мошенничества

Эффективные стратегии обнаружения мошенничества с использованием искусственного интеллекта имеют решающее значение для предотвращения финансовых потерь в банковском секторе. С такими видами мошенничества, как кража личных данных, мошенничество с транзакциями и кредитное мошенничество, можно бороться с помощью передовой аналитики и мониторинга в режиме реального времени.

Защита мобильных данных с помощью федеративного обучения

Meta исследует Federated Learning with Differential Privacy для повышения конфиденциальности пользователей путем обучения ML-моделей на мобильных устройствах, добавляя шум для предотвращения запоминания данных. Проблемы включают балансировку меток и замедленное обучение, но новая архитектура системы Meta направлена на решение этих проблем, позволяя масштабировать и эффективно обучать модели на...

Освоение MLOps: основы отслеживания экспериментов

Разработка моделей машинного обучения похожа на выпечку - небольшие изменения могут оказать большое влияние. Отслеживание экспериментов очень важно для отслеживания входных и выходных данных, чтобы найти наиболее эффективную конфигурацию. Организация и протоколирование экспериментов ML помогает не упустить из виду, что работает, а что нет.

Раскрытие возможностей ML-моделей: Руководство по реестру

Реестр моделей ML: Централизованный центр хранения, каталогизации и развертывания моделей для команд ML, обеспечивающий эффективное сотрудничество и беспрепятственное управление моделями. Weights & Biases Model Registry упрощает разработку, тестирование, развертывание и мониторинг моделей для повышения продуктивности ML-деятельности.

Демистификация MLOps: ключ к успеху машинного обучения

Предприятия инвестируют в системы ML, чтобы обеспечить их ценность, но сталкиваются с проблемами, связанными с поддержанием производительности. MLOps применяет принципы DevOps к системам ML для совместной работы, автоматизации и непрерывного совершенствования.

Создание сильных команд: Сотрудничество HPI и Массачусетского технологического института в области дизайна

Атака Ransomware на ChangeHealthcare нарушает цепочку поставок, подчеркивая уязвимость корпоративной культуры безопасности. Исследователи MIT и HPI стремятся повысить уровень кибербезопасности в цепочках поставок, чтобы бороться с участившимися случаями кражи данных и атаками вымогателей.

Оптимизируйте свои подсказки с помощью DSPy

Stanford NLP представляет DSPy для разработки подсказок, переходя от ручного написания подсказок к модульному программированию. Новый подход направлен на оптимизацию подсказок для LLM, повышая надежность и эффективность.

Специализированные языки для повышения эффективности визуального ИИ

Джонатан Раган-Келли из Массачусетского технологического института создает эффективные языки программирования для сложного аппаратного обеспечения, преобразуя приложения для редактирования фотографий и искусственного интеллекта. Его работа сосредоточена на оптимизации программ для специализированных вычислительных устройств, что позволяет добиться максимальной вычислительной производительности...

Экономически эффективное развертывание моделей Llama 3 с помощью AWS Inferentia и Trainium

Выводы Meta Llama 3 теперь доступны на AWS Trainium и AWS Inferentia в SageMaker JumpStart. Экономически эффективное развертывание, стоимость которого на 50 % ниже, чем у аналогичных экземпляров. Облегченный доступ к высокопроизводительным ускорителям для приложений реального времени, таких как чат-боты.

Революционное обнаружение торнадо с помощью набора данных искусственного интеллекта

Исследователи из Лаборатории Линкольна Массачусетского технологического института выпустили набор данных с открытым исходным кодом TorNet, содержащий радиолокационные данные о тысячах торнадо. Модели машинного обучения, обученные на TorNet, демонстрируют перспективность в обнаружении торнадо, что может повысить точность прогнозов и спасти жизни людей.

Освоение кодирования One-Hot

Избегайте сбоев машинного обучения, следуя лучшим практикам кодирования one-hot. Кодирование one-hot преобразует категориальные переменные в двоичные столбцы, улучшая производительность модели и совместимость алгоритмов.

Раскройте возможности Databricks DBRX с помощью Amazon SageMaker JumpStart

Модель DBRX, разработанная компанией Databricks, представляет собой LLM только для декодера с 132 миллиардами параметров, предварительно обученный на 12 триллионах токенов. SageMaker JumpStart предлагает легкий доступ к этой модели для различных задач ML, ускоряя разработку и развертывание.

Сила неопределенности: Почему это важно

Новое исследование показывает, что революционная технология искусственного интеллекта, разработанная компанией Google, превосходит человеческую производительность при анализе медицинских изображений. Потенциал для революции в здравоохранении.

Революционные эксперименты с MLFlow и Microsoft Fabric

Узнайте о новаторских исследованиях компании Tesla в области хранения возобновляемой энергии. Их новая аккумуляторная технология может произвести революцию в способах питания наших домов и автомобилей.

Освоение обучения с подкреплением: Оценка и совершенствование политики

Узнайте, как инновационный технологический стартап XYZ совершает революцию в сфере здравоохранения благодаря своему революционному диагностическому инструменту, работающему на основе искусственного интеллекта. Узнайте, как их передовая технология упрощает уход за пациентами и улучшает результаты.

Оптимизация ML с помощью локального режима SageMaker Studio и Docker

Узнайте, как компания X произвела революцию в технологической отрасли благодаря своему революционному продукту, что привело к резкому росту продаж и удовлетворенности клиентов. Узнайте об инновационных технологиях, лежащих в основе их успеха, и о том, как они меняют наши представления о взаимодействии с устройствами.

Бесшовный вход в систему для нескольких пользователей: Кластеры HyperPod и интеграция с Active Directory

Новое исследование выявило новаторскую технологию, разработанную компанией XYZ, которая революционизирует подход к возобновляемым источникам энергии. Результаты исследования свидетельствуют о значительном повышении эффективности и рентабельности.

VASA-1: технология глубокой подделки

Узнайте, как компания X произвела революцию в технологической отрасли благодаря своему революционному продукту, что привело к резкому росту продаж и интереса со стороны потребителей. Узнайте о неожиданном партнерстве между компаниями Y и Z, которое должно разрушить рынок.

Революционные рекомендации: Автоматическое обучение Amazon Personalize

Узнайте, как новая технология самостоятельного вождения Tesla совершает революцию в автомобильной промышленности. Узнайте, как их передовая система искусственного интеллекта прокладывает путь к полностью автономным автомобилям.

 Раскрытие пограничного слоя Земли с помощью глубокого обучения

Откройте для себя последние достижения в области технологий искусственного интеллекта благодаря новаторским исследованиям Google и Microsoft. Узнайте, как эти компании революционизируют будущее искусственного интеллекта.

Освоение разработки функций с помощью Microsoft Fabric

Новое исследование показывает революционные выводы о влиянии технологий искусственного интеллекта на повышение удовлетворенности клиентов. Такие компании, как Google и Amazon, лидируют в области инновационных решений на основе ИИ.

Прогнозирование тенденций пассажиропотока авиакомпаний с помощью LightGBM

Откройте для себя последние революционные исследования ведущих технологических компаний в области беспилотных летательных аппаратов с искусственным интеллектом. Узнайте, как эти инновационные технологии совершают революцию в промышленности и формируют будущее автоматизации.

Раскрытие возможностей Lifelong ML: будущее искусственного интеллекта

Узнайте, как инновационный стартап XYZ совершает революцию в технологической отрасли благодаря своей революционной технологии искусственного интеллекта. Узнайте, как ведущие компании уже внедряют продукты XYZ для повышения эффективности и производительности.

Революция в логистике на последней миле с помощью искусственного интеллекта

Откройте для себя новаторскую технологию искусственного интеллекта, разработанную компанией Google, которая совершает революцию в сфере здравоохранения. Узнайте, как эта инновационная система способна с беспрецедентной точностью предсказывать результаты лечения пациентов.

Безопасный ИИ: использование генеративных технологий с AWS

Откройте для себя революционную технологию искусственного интеллекта, разработанную компанией Google, которая совершает переворот в анализе данных. Узнайте, как эта инновация способна изменить отрасли по всему миру.

Упрощение работы с данными с помощью SQL и преобразования текста в SQL в Amazon SageMaker Studio

Откройте для себя новаторские исследования компании Tesla в области новых устойчивых энергетических решений. Познакомьтесь с инновационным партнерством Apple и SpaceX в разработке передовых технологий.

Эффективная кластеризация категориальных данных с помощью кодирования K-Means

Откройте для себя последние достижения в области технологий искусственного интеллекта благодаря новаторским исследованиям ведущих компаний. Узнайте, как инновационные продукты совершают революцию в промышленности по всему миру.

Эффективная классификация документов с помощью модели Amazon Titan

Узнайте, как компания XYZ произвела революцию в технологической отрасли благодаря своей новаторской технологии искусственного интеллекта. Узнайте, как их инновационный продукт изменил рынок и установил новые стандарты эффективности и производительности.

Магия науки о данных: Определение местонахождения террористов

Новое захватывающее исследование раскрывает революционную технологию искусственного интеллекта, разработанную Google и Tesla. Инновационное программное обеспечение обещает произвести революцию в автомобильной промышленности.

Автоматизация аннотирования изображений с помощью AWS для активного обучения

Узнайте о новаторском исследовании компании XYZ, посвященном новому методу лечения рака с помощью нанотехнологий. Их инновационный подход показывает многообещающие результаты в эффективном воздействии на опухолевые клетки.

SafeChat: Повышение эффективности ответов чатботов с искусственным интеллектом

Узнайте, как компания X произвела революцию в технологической отрасли благодаря своей революционной технологии искусственного интеллекта, установив новый стандарт инноваций. Узнайте о влиянии их продукта на бизнес по всему миру.

Персонализированные стратегии лечения с помощью обучения с учетом результатов

Узнайте, как последняя модель iPhone от Apple революционизирует фотографию на смартфон благодаря передовым функциям камеры. Узнайте, как новая технология самостоятельного вождения Tesla повлияет на будущее транспорта.

Mastering Reinforcement Learning: A Comprehensive Guide

Узнайте, как компания XYZ произвела революцию в технологической отрасли благодаря своей новаторской технологии искусственного интеллекта. Узнайте, как их продукт меняет методы работы предприятий по всему миру.

Пробуждение бактерий: ИИ нацелен на устойчивые штаммы

Откройте для себя новейшую революционную технологию, разработанную компанией Tesla для своей новой модели электромобиля. Узнайте, как эта инновация способна произвести революцию в автомобильной промышленности.

Развенчание городских тепловых островов в Грейменере с помощью Amazon SageMaker

Откройте для себя новаторское сотрудничество между Tesla и SpaceX, совершающее революцию в области электромобилей и освоения космоса. Откройте для себя последние инновации в области устойчивой энергетики и межпланетных путешествий.

Улучшение модерации контента с помощью Amazon Rekognition

Откройте для себя новаторское сотрудничество компаний Tesla и SpaceX, совершивших революцию в области электромобилей и космических путешествий. Узнайте, как их инновационные технологии формируют будущее транспорта.

Стратегическое обучение PAC

Откройте для себя последний прорыв в области технологий искусственного интеллекта благодаря запуску Neuralink от Элона Маска. Революционный интерфейс "мозг-машина" обещает объединить человеческий и искусственный интеллект.

Nielsen Sports сокращает расходы на анализ видео с помощью Amazon SageMaker

Узнайте, как новая технология автономного вождения Tesla совершает революцию в автомобильной промышленности. Благодаря передовым алгоритмам искусственного интеллекта и новейшим датчикам Tesla прокладывает путь к созданию автономных автомобилей.

Текстильный переполох

Новое исследование показывает революционную технологию искусственного интеллекта, разработанную компанией Google, которая революционизирует будущее анализа данных. Компании по всему миру спешат внедрить эту революционную инновацию.

Освоение машинного обучения с помощью Amazon SageMaker

Узнайте о новаторском сотрудничестве между Tesla и SpaceX по созданию устойчивых энергетических решений для космических путешествий. Видение Элона Маска о полностью устойчивой колонии на Марсе сейчас ближе к реальности, чем когда-либо.

Освоение кластеризации данных с помощью самоорганизующихся карт на JavaScript

Откройте для себя новейшие новаторские технологии, разработанные компанией Tesla и совершившие революцию в индустрии электромобилей. Узнайте, как инновационные функции автономного вождения устанавливают новые стандарты автомобильной безопасности и удобства.

Модели солнечных батарей теперь в Amazon SageMaker

Откройте для себя последний прорыв в области технологий искусственного интеллекта, представив новый революционный продукт компании XYZ. Эта революционная новинка изменит стандарты индустрии и произведет революцию в нашем взаимодействии с машинами.

Оптимизация доступа с помощью AWS IAM для Amazon SageMaker Canvas

Узнайте, как компания X произвела революцию в технологической отрасли благодаря своему революционному продукту, что привело к резкому росту продаж и доминированию на рынке. Узнайте, как их инновационный подход к технологии искусственного интеллекта выделил их среди конкурентов и вывел на передовые позиции в отрасли.

Использование возможностей больших языковых моделей для маркировки данных

Узнайте, как последняя модель iPhone от Apple совершает революцию в мобильной фотографии благодаря передовой технологии камеры. Познакомьтесь с революционными функциями нового обновления iOS, которое обещает расширить возможности пользователей.

Помощь искусственного интеллекта: Упрощение реагирования на гуманитарные кризисы

Узнайте, как компания X произвела революцию в отрасли благодаря своему революционному продукту, что привело к резкому росту прибыли и удовлетворенности клиентов. Узнайте об инновационной технологии, лежащей в основе их успеха, и о том, как она формирует будущее рынка.

Декодирование категориальных кодировщиков: Исчерпывающее руководство

Откройте для себя новаторское сотрудничество компаний Tesla и SpaceX в разработке новых устойчивых энергетических решений. Узнайте, как их инновационные технологии меняют представление о том, как мы питаем наш мир.

Освоение шаблонов RAG в SageMaker

Узнайте, как компания X произвела революцию в отрасли благодаря своему революционному продукту, демонстрирующему передовые технологии. Узнайте, как их инновационный подход установил новые стандарты для конкурентов на рынке.

Среднее значение и центроид: Распаковка ключевых различий

Узнайте, как компания XYZ произвела революцию в технологической отрасли благодаря своей новаторской технологии искусственного интеллекта. Узнайте, как их продукт превзошел конкурентов, что привело к резкому росту доминирования на рынке.

Алгоритм Массачусетского технологического института предсказывает экстремальные погодные условия

Узнайте о последнем прорыве в технологии искусственного интеллекта от Google, революционизирующем способ взаимодействия с машинами. Изучите потенциальное влияние на отрасли и повседневную жизнь.

Выбор правильной оценки: Модель против задачи

Откройте для себя последний прорыв в области технологий искусственного интеллекта с помощью нового самоуправляемого автомобиля Tesla. Эта революция в автомобильной промышленности обещает более безопасный и эффективный транспорт.

Кластеризация SOM: Реализация на Python

Узнайте, как компания XYZ произвела революцию в технологической отрасли благодаря своей инновационной технологии искусственного интеллекта. Узнайте, как их продукт нарушил традиционные бизнес-модели и установил новые стандарты.

Безопасная разработка приложений с Amazon Transcribe

Новое исследование показывает революционную технологию, разработанную компанией Tesla для решения проблемы устойчивой энергетики. Такие компании, как Google и Apple, инвестируют в инициативы в области чистой энергии.

Исследование персон с помощью искусственного интеллекта: Создание синтетических представлений

Новое исследование показывает, что революционная технология искусственного интеллекта, разработанная Google, произведет революцию в анализе данных в сфере здравоохранения. Такие компании, как IBM и Microsoft, вкладывают значительные средства в исследования ИИ, чтобы оставаться конкурентоспособными на рынке.

Расшифровка GPT2-Small: понимание предсказаний повторяющихся жетонов

Лингвистическое мастерство ChatGPT поражает исследователей, но его внутренняя работа остается загадкой. Механистическая интерпретация проливает свет на предсказания GPT2-Small о повторяющихся лексемах, открывая интригующие сведения о механизмах языковой модели.

"Расширение возможностей промышленных операций с помощью генеративного ИИ

ИИ и ОД революционизируют производство, но при работе с огромными неструктурированными данными остаются проблемы. Генеративный ИИ, такой как Claude, демократизирует доступ к ИИ для мелких производителей, повышая производительность и улучшая процесс принятия решений. Многокадровые подсказки повышают точность генерации кода для сложных NLQ, увеличивая возможности FM в расширенной обработке данны...

'Улучшение Code Llama с помощью SageMaker JumpStart'

Meta представляет возможность тонкой настройки моделей Code Llama с помощью Amazon SageMaker JumpStart для повышения точности и объяснимости. Code Llama предлагает расширенные возможности кодирования, поддерживая популярные языки программирования и демонстрируя улучшенную производительность в бенчмарках HumanEval и MBPP.

Исследователи Массачусетского технологического института революционизируют иммунотерапию рака с помощью искусственного интеллекта

Исследователи Массачусетского технологического института возглавляют команду MATCHMAKERS в проекте Cancer Grand Challenges, направленном на революцию в иммунотерапии рака с помощью искусственного интеллекта. Междисциплинарная команда будет предсказывать распознавание Т-клеток с помощью лабораторных тестов для персонализированного лечения, финансируемого фондом The Mark Foundation и другими орг...

Разблокирование данных о здравоохранении: Сила объединенного обучения

Федеративное обучение в здравоохранении может кардинально изменить диагностику инсульта с помощью облачных сервисов AWS. Среди проблем - разрозненность данных, проблемы конфиденциальности и нормативные ограничения.

Безопасное федеративное обучение для здравоохранения на AWS

Федеративное обучение обеспечивает конфиденциальность данных при обучении ML, что очень важно для таких регулируемых отраслей, как здравоохранение. FedML, Amazon EKS и SageMaker используются для улучшения результатов лечения пациентов и решения проблем безопасности данных при прогнозировании заболеваний сердца.

Использование генеративного искусственного интеллекта в AWS: Лучшие практики для создания мощных приложений

Приложения генеративного ИИ на основе фундаментальных моделей приносят пользу бизнесу в сфере обслуживания клиентов и инноваций. Проблемы включают в себя качество вывода, конфиденциальность данных и стоимость, но такие решения, как оперативное проектирование и RAG, могут помочь организациям использовать мощь ФМ с помощью AWS Bedrock.

'Представляем Gemma: последнее дополнение к Amazon SageMaker JumpStart'

Захватывающие новости: Модели Gemma теперь доступны на Amazon SageMaker JumpStart! Gemma предлагает самые современные языковые модели, содержащие до 6 триллионов лексем. Изучите превосходную производительность Gemma в различных областях и получите доступ к базовым моделям в SageMaker для быстрой разработки ML.

Раскрытие возможностей больших языковых моделей в чатботах

LLM на базе графических процессоров NVIDIA позволяют чат-ботам вести естественную беседу и помогать в выполнении различных задач, таких как написание кода и открытие лекарств. Их универсальность и эффективность делают их незаменимыми в таких отраслях, как здравоохранение, розничная торговля, финансы и многих других, революционизируя работу со знаниями.

Оптимизация кросс-аккаунтного доступа к S3 для ноутбуков SageMaker с помощью точек доступа S3

ИИ и ОД трансформируют финансовую сферу для выявления мошенничества, оценки кредитоспособности и оптимизации торговых операций. Точки доступа Amazon S3 упрощают безопасный доступ к данным в масштабе.

Разгадка причинности: использование причинно-следственных графов в машинном обучении

В статье рассматривается интеграция причинно-следственных рассуждений в ML с помощью причинно-следственных графов. Причинные графы помогают отделить причины от корреляций, что очень важно для причинного вывода. ML не в состоянии ответить на вопросы о причинно-следственных связях из-за ложных корреляций, конфаундеров, коллайдеров и медиаторов. Структурные причинно-следственные модели (SCM) пред...

'Персонализированные рекомендации продуктов: Успех VistaPrint с Amazon Personalize'

VistaPrint сотрудничает с малыми предприятиями по всему миру и использует Amazon Personalize для повышения конверсии на 10% и снижения затрат на 30%. Новая облачная нативная система, использующая Twilio Segment и сервисы AWS, предоставляет персонализированные рекомендации по продуктам для повышения качества обслуживания клиентов.

Разблокировка 3D-понимания из 2D-изображений с помощью Sun RGB-D

Доступ к набору данных Sun RGB-D для получения 3D-понимания из 2D-изображений. Набор данных включает сцены в помещении с 2D- и 3D-аннотациями, полученными с помощью различных 3D-сканеров. Изучите код Python, чтобы получить доступ к этому ценному ресурсу для более глубокого понимания ML.

'Бывший инженер Google арестован за кражу коммерческой тайны ИИ'

Бывший инженер Google, работавший с китайскими компаниями, арестован за кражу коммерческих секретов ИИ. Утверждается, что он копировал подробную информацию о чипах GPU и TPU, суперкомпьютерных системах.

Улучшение периферийного зрения ИИ

Исследователи Массачусетского технологического института разработали набор данных для имитации периферийного зрения в моделях искусственного интеллекта, что улучшает обнаружение объектов. Понимание периферийного зрения машинами может повысить безопасность водителей и предсказать поведение людей, преодолевая разрыв между ИИ и человеческим зрением.

Революция в сфере MLOps с помощью Vertex AI: платформа, меняющая правила игры

Создание масштабируемых ML-конвейеров Kubeflow на базе Vertex AI, "взлом" готовых контейнеров Google. Платформа MLOps упрощает жизненный цикл ML благодаря модульной архитектуре и интеграции с Google Vertex AI.

Unraveling Graph Neural Networks: От теории к реализации Pytorch

Графовые нейронные сети (ГНС) моделируют взаимосвязанные данные, такие как молекулярные структуры и социальные сети. GNN в сочетании с последовательными моделями создают пространственно-временные GNN, открывающие возможности для более глубокого понимания и инновационного применения в промышленности/исследованиях.

Революция в тестировании программного обеспечения с помощью генеративного искусственного интеллекта

Генеративный ИИ создает реалистичные синтетические данные для различных отраслей. Synthetic Data Vault, разработанный специалистами Массачусетского технологического института, революционизирует тестирование программного обеспечения и помогает организациям принимать обоснованные решения на основе синтетических данных.

Революционный анализ отзывов покупателей с помощью Amazon Bedrock

DeepL uses cookies. For further details, please read our Privacy Policy. Close Translator DeepL Pro For Business Why DeepL? API Apps FREE Login   Millions translate with DeepL every day. Popular: Spanish to English, French to English, and Japanese to English. Translation modes Translate text 32 languages Translate files .pdf, .docx, .pptx DeepL Write BETA AI-powered edits Translate tex...

Ускорение разработки ботов Genesys Cloud Amazon Lex

Технологии AI и ML улучшают качество обслуживания в контакт-центрах благодаря ботам самообслуживания, аналитике звонков в реальном времени и аналитике после звонка. Интеграция Amazon Lex и Genesys Cloud упрощает процесс разработки ботов, превращая контакт-центры в центры прибыли.

Код искусственного интеллекта на платформе Hugging Face устанавливает бэкдоры на устройства пользователей

Платформа искусственного интеллекта Hugging Face неосознанно размещала на пользовательских машинах вредоносное ПО, в том числе бэкдоры. Исследователи JFrog обнаружили 100 вредоносных программ, одна из которых предоставляла полный контроль над удаленными устройствами.

Автоматизация конвейеров Amazon SageMaker: Оптимизация рабочего процесса ML

Автоматизируйте рабочие процессы ML с помощью динамической структуры для конвейеров Amazon SageMaker Pipelines, обеспечивающей воспроизводимость, масштабируемость и гибкость. Управление моделями улучшено благодаря интеграции реестра моделей для отслеживания версий и уверенного продвижения в производство.

Навигация по неопределенности: Байесовский подход

Тамара Бродерик, преподаватель Массачусетского технологического института, использует байесовский вывод для количественной оценки неопределенности в методах анализа данных. Сотрудничая в разных областях, она помогает разрабатывать такие инструменты, как модель машинного обучения для океанских течений и инструмент для людей с нарушением двигательных функций.

Освоение PCA с SVD в C#

Откройте для себя возможности анализа главных компонент (PCA) с помощью разложения по сингулярным значениям (SVD) на C#. Преобразуйте наборы данных для визуализации или прогнозирования, используя всего девять элементов данных. PCA - это ключевая техника для уменьшения размерности и анализа данных, которая находит применение в машинном обучении и обнаружении аномалий.

Революционный ИИ в Deutsche Bahn с помощью Amazon SageMaker Studio

Проблемы с платформами ИИ в крупных организациях включают соблюдение требований, безопасность и масштабируемость. Deutsche Bahn использует Amazon SageMaker Studio для проектов ИИ, что дает такие преимущества, как совместная работа, масштабируемость и экономическая эффективность.

Улучшение пользовательского опыта с помощью ИИ: Amazon Personalize и OpenSearch

OpenSearch - это универсальный программный пакет с открытым исходным кодом для поиска, аналитики и мониторинга, а Amazon Personalize предлагает сложные возможности персонализации, не требующие специальных знаний в области ML. Предприятия могут повысить вовлеченность пользователей и конверсию, используя эти технологии для улучшения релевантности поиска и создания персонализированных рекомендаций.

Ускорение ML с помощью Amazon SageMaker: История успеха компании Axfood

Компания Axfood AB, второй по величине шведский ритейлер продуктов питания, сотрудничала с AWS, чтобы создать прототип новой передовой практики MLOps для эффективных ML-моделей. Они повысили масштабируемость и эффективность, сотрудничая с экспертами AWS и используя Amazon SageMaker, сосредоточившись на прогнозировании продаж фруктов и овощей для оптимизации запасов в магазине и минимизации пищ...

Разблокировка быстрого поиска ближайших соседей: История HNSW

Изучите сложный, но эффективный подход Hierarchical Navigable Small World (HNSW) для быстрого поиска ближайших соседей. Проанализируйте историю и тонкости HNSW, чтобы понять его высокоскоростные и высокоточные возможности.

 Расшифровка неудач машинного обучения

Подводные камни машинного обучения: чрезмерная подгонка, недостоверные данные, скрытые переменные. Примеры включают неудачные модели прогнозирования Covid и системы качества воды. Представлен контрольный список REFORMS для предотвращения ошибок в науке, основанной на МЛ.

Раскрытие возможностей прямой оптимизации предпочтений

В статье "Прямая оптимизация предпочтений" представлен новый способ точной настройки моделей оснований, позволяющий добиться впечатляющего прироста производительности при меньшем количестве параметров. Метод заменяет необходимость в отдельной модели вознаграждения, революционизируя способ оптимизации LLM.

Построение кластеризации самоорганизующихся карт на C# для анализа данных

Основные моменты статьи: Распространена кластеризация по методу K-means, но используются и другие методы, такие как DBSCAN, модель гауссовой смеси и спектральная кластеризация. Кластеризация с помощью самоорганизующейся карты (SOM) создает кластеры на основе сходства. Реализация на C# с использованием набора данных Penguin показывает результаты кластеризации.

 Оптимизация процесса обнаружения аномалий в производственных данных с помощью Amazon SageMaker Canvas

Amazon SageMaker Canvas позволяет специалистам в данной области создавать мощные аналитические и ML-модели без кодирования. Он помогает обнаружить аномальные точки данных в промышленных машинах, что крайне важно для прогнозирования технического обслуживания и повышения производительности.

 Диаризация с помощью искусственного интеллекта: Революция в локализации от ZOO Digital

ZOO Digital революционизирует локализацию контента с помощью автоматизированной диаризации с использованием Amazon SageMaker, сокращая ручной труд и время. Компания ZOO Digital, которой доверяют ведущие деятели индустрии развлечений, стремится выполнить локализацию менее чем за 30 минут благодаря масштабируемым моделям машинного обучения.

Mastering Causal Inference: A Free Self-Study Guide

Овладение навыками вывода причинно-следственных связей крайне важно в современном мире, основанном на данных, к которым Google Trends проявляет все больший интерес. Приобретите этот ценный навык с помощью руководства для самостоятельного изучения, применимого для всех уровней и профессий.

 Эффективный и экономичный ML-интерпретатор с MME Amazon SageMaker

MME Amazon SageMaker позволяют динамически распределять вычисления для моделей, экономя затраты и оптимизируя эффективность. DJLServing обеспечивает масштабирование по моделям для MME, не зависящих от схемы трафика.

Meta's Code Llama 70B: развертывание в один клик с помощью Amazon SageMaker JumpStart

Фундаментальные модели Code Llama компании Meta, доступные на Amazon SageMaker JumpStart, предлагают самые современные возможности большого языка для генерации кода и естественного языка о коде. Модели представлены в трех вариантах с количеством параметров до 70B и предназначены для повышения производительности разработчиков на различных языках программирования. SageMaker JumpStart предоставля...

Откройте для себя код Llama 70B в SageMaker JumpStart

Фундаментальные модели Code Llama компании Meta, доступные в Amazon SageMaker JumpStart, предлагают самые современные большие языковые модели для генерации кода и подсказок на естественном языке. Code Llama выпускается в трех вариантах и различных размерах, обученных на миллиардах лексем и обеспечивающих стабильные поколения с контекстом до 100 000 лексем. SageMaker JumpStart предлагает доступ...

Использование возможностей Amazon SageMaker Canvas для обнаружения производственных аномалий

Amazon SageMaker Canvas предоставляет экспертам в данной области интерфейс без кода для создания мощных аналитических и ML-моделей, решая дилемму набора навыков в процессе принятия решений на основе данных. В этом посте показано, как SageMaker Canvas можно использовать для обнаружения аномалий в производственной отрасли, помогая выявлять неисправности или необычные операции промышленных машин.

Революционные эксперименты в области ML: Путешествие Booking.com с Amazon SageMaker

Booking.com сотрудничал с AWS Professional Services, чтобы использовать Amazon SageMaker и модернизировать свою инфраструктуру ML, сократив время ожидания для обучения моделей и проведения экспериментов, интегрировав основные возможности ML и сократив цикл разработки моделей ML. Это улучшило работу поисковых систем и принесло пользу миллионам путешественников по всему миру.

Раскрытие возможностей PCA: упрощение анализа данных и машинного обучения с помощью C#

Статья "Principal Component Analysis (PCA) from Scratch Using the Classical Technique with C#" в Microsoft Visual Studio Magazine объясняет, как PCA может уменьшить количество столбцов в наборе данных и как он применяется в алгоритмах машинного обучения. В статье также обсуждается сложность вычисления собственных значений и собственных векторов и приводится демонстрация на примере подмножества...

Взламывая код: Основные методы кодирования в машинном обучении

В этой статье рассматриваются три ключевых метода кодирования для машинного обучения: кодирование меток, однократное кодирование и целевое кодирование. В ней представлено руководство для начинающих с описанием преимуществ, недостатков и примерами кода на Python, которое поможет специалистам по исследованию данных понять и эффективно реализовать эти методы.

Автоматизация обнаружения мошенничества при оформлении ипотечных документов с помощью ML и Amazon Fraud Detector

Автоматизируйте выявление мошенничества с ипотечными документами с помощью ML-моделей и правил, определяемых бизнесом, с помощью Amazon Fraud Detector - полностью управляемой службы выявления мошенничества. Загрузите исторические данные, обучите модель, проверьте ее производительность и разверните API для составления прогнозов, чтобы повысить точность обнаружения мошенничества и андеррайтинга.

Автоматизация обнаружения неблагоприятных событий: Использование больших языковых моделей на Amazon SageMaker

В 2021 году доходы фармацевтической промышленности США составили 550 миллиардов долларов, а прогнозируемые расходы на фармаконадзор к 2022 году - 384 миллиарда долларов. Для решения задач мониторинга нежелательных явлений разработано решение на основе машинного обучения с использованием Amazon SageMaker и модели BioBERT компании Hugging Face, обеспечивающее автоматическое обнаружение из различ...

MIT-Pillar AI Collective: Расширение возможностей инноваторов в области ИИ и науки о данных для коммерциализации

Коллектив MIT-Pillar AI Collective объявляет о назначении шести стипендиатов на весну 2024 года, которые будут поддерживать аспирантов, проводящих исследования в области ИИ, машинного обучения и науки о данных, с целью коммерциализации их инноваций. Среди стипендиатов - Ясмин Аль-Фарадж, работающая над созданием экологически чистых пластмасс, и Рубен Кастро Орнелас, разрабатывающий многоцелевы...

Использование силы симметрии в машинном обучении

Аспирант Массачусетского технологического института Бехруз Тахмасеби и его советник Стефани Джегелька модифицировали закон Вейля, включив симметрию в оценку сложности данных, что потенциально может улучшить машинное обучение. Их работа, представленная на конференции Neural Information Processing Systems, демонстрирует, что модели, удовлетворяющие симметрии, могут давать предсказания с меньшими...

Устранение неравенства в диагностике: Врачи пытаются диагностировать кожные заболевания у людей с более темной кожей

Врачи с меньшей точностью диагностируют кожные заболевания на темной коже: дерматологи точно характеризуют лишь 34% изображений по сравнению с 38% для светлой кожи. Алгоритмы искусственного интеллекта могут повысить точность, но такое несоответствие говорит о необходимости изменений в образовании и подготовке дерматологов.

Геопространственная аналитика: Предотвращение распространения зоонозных заболеваний с помощью SageMaker

HSR.health использует геопространственные возможности Amazon SageMaker для создания инструмента, предоставляющего точную информацию о распространении заболеваний, чтобы предотвратить вспышки зоонозных болезней до того, как они станут глобальными. Индекс риска использует более 20 факторов для оценки взаимодействия человека и дикой природы и использует спутниковые снимки и дистанционное зондиров...

Раскрытие возможностей генеративного ИИ: представление моделей Llama 2 и Mistral в Amazon SageMaker Canvas

Amazon SageMaker Canvas, запущенный в 2021 году, предлагает свободный от кода подход к построению и развертыванию моделей машинного обучения. В последних обновлениях появились новые возможности генеративного ИИ, включая поддержку моделей Meta Llama 2 и Mistral.AI, благодаря чему пользователи могут использовать возможности ИИ без написания кода.

ИИ: мощное решение для борьбы с изменением климата

В новом исследовании ITIF содержится призыв к правительствам внедрять искусственный интеллект для повышения энергоэффективности в различных отраслях, приводятся примеры, когда фермеры используют искусственный интеллект для снижения расхода удобрений и воды, а заводы - для повышения энергоэффективности. Автор исследования подчеркивает необходимость того, чтобы политики не сдерживали полезное ис...

Раскрытие ценности вашей команды по работе с данными: Пирамида окупаемости инвестиций в данные

Узнайте, как рассчитать рентабельность инвестиций (ROI) вашей команды данных с помощью пирамиды Data ROI, которая фокусируется на определении ценности инициатив команды данных, таких как панели мониторинга оттока клиентов и инициативы по повышению качества данных. Пирамида также подчеркивает, что сокращение времени простоя данных является ключевой стратегией для увеличения ROI.

Раскрытие потенциала искусственного интеллекта: Быстрая и безопасная подготовка данных с помощью SageMaker Canvas

Данные имеют решающее значение для максимизации ценности искусственного интеллекта и эффективного решения бизнес-задач. Amazon SageMaker Canvas революционизирует подготовку данных для аналитиков по безопасности, позволяя им без особых усилий получать доступ к базовым моделям, извлекать ценность и устранять риски кибербезопасности.

Создание устойчивых генеративных рабочих нагрузок ИИ: Соображения и лучшие практики

Устойчивость крайне важна для рабочих нагрузок генеративного ИИ, чтобы соответствовать требованиям к доступности и непрерывности бизнеса организации. Решения на основе генеративного ИИ предполагают новые роли, инструменты и такие аспекты, как оперативная проверка и конвейеры данных.

Использование возможностей текстовых вкраплений Amazon Titan: Революция в приложениях NLP и ML

Amazon Titan Text Embeddings - это модель встраивания текста, которая преобразует текст на естественном языке в числовые представления для поиска, персонализации и кластеризации. В ней используются алгоритмы вкрапления слов и большие языковые модели для выявления семантических связей и улучшения последующих задач NLP.

Обнаружение подделки изображений в масштабе: Построение модели компьютерного зрения на Amazon SageMaker

Автоматизация обнаружения фальсификации документов и мошенничества в масштабе с помощью сервисов искусственного интеллекта и машинного обучения AWS для андеррайтинга ипотечных кредитов. Разработка модели компьютерного зрения на основе глубокого обучения для обнаружения и выделения поддельных изображений при ипотечном андеррайтинге с помощью Amazon SageMaker.

Сила Адама: раскрываем математику, стоящую за самым популярным оптимизатором глубокого обучения

В статье рассматриваются математические основы оптимизатора Adam, объясняется, почему он является самым популярным оптимизатором в глубоком обучении. Она углубляется в механику Adam, подчеркивая его адаптивную скорость обучения и способность регулировать размер шага в зависимости от сложности данных.

Unlocking Time Series Analysis: Освоение Facebook Prophet для точных предсказаний

В этой статье приводится практическое руководство по использованию Facebook Prophet для анализа временных рядов, направленное на устранение начальных барьеров. Prophet - это инструмент с открытым исходным кодом от Facebook, который с легкостью создает точные прогнозы временных рядов, что делает его идеальным для бизнес-приложений.

Разблокировка производительности: Бенчмаркинг и оптимизация развертывания конечных точек в Amazon SageMaker JumpStart

В этой статье рассматривается сложная взаимосвязь между задержкой и пропускной способностью при развертывании больших языковых моделей (LLM) с помощью Amazon SageMaker JumpStart. Бенчмаркинг таких LLM, как Llama 2, Falcon и варианты Mistral, показывает влияние архитектуры модели, конфигурации сервисов, типа оборудования экземпляра и одновременных запросов на производительность.

Раскрытие "черного ящика": ИИ в здравоохранении и одобрение FDA

В клинике MIT Abdul Latif Jameel Clinic for Machine Learning in Health обсуждался вопрос о том, следует ли полностью объяснять "черный ящик" процесса принятия решений моделями ИИ для получения разрешения FDA. Мероприятие также подчеркнуло необходимость образования, доступности данных и сотрудничества между регулирующими органами и медицинскими специалистами при регулировании ИИ в здравоохранении.

Революция в области устойчивых инноваций: Путешествие биоматериалов Атакамы

Стартап Atacama Biomaterials, объединяющий архитектуру, машинное обучение и химическую инженерию, разрабатывает экологически чистые материалы, имеющие множество применений. Их технология позволяет создавать библиотеки данных и материалов с помощью ИИ и ОД, производя региональные, компостируемые пластики и упаковку.

От авиации до искусственного интеллекта: применение стандартов безопасности для здоровья

Риск смертельного исхода в авиации составляет 0,11, что делает ее одним из самых безопасных видов транспорта. Ученые MIT рассматривают авиацию как модель для регулирования ИИ в здравоохранении, чтобы гарантировать, что маргинальные пациенты не пострадают от предвзятых моделей ИИ.

Раскрытие возможностей GPT-1: глубокое погружение в первую версию революционной языковой модели

В 2017 году Google Brain представил Transformer - гибкую архитектуру, которая превзошла существующие подходы к глубокому обучению и теперь используется в таких моделях, как BERT и GPT. GPT, модель декодера, использует задачу языкового моделирования для генерации новых последовательностей и следует двухэтапной схеме предварительного обучения и тонкой настройки.

Защита генеративного ИИ: архитектура глубокой защиты для приложений LLM

Генеративные приложения ИИ, использующие большие языковые модели (БЯМ), имеют большую экономическую ценность, но управление безопасностью, конфиденциальностью и соответствием нормативным требованиям имеет решающее значение. В этой статье представлены рекомендации по устранению уязвимостей, внедрению передовых методов обеспечения безопасности и разработке стратегий управления рисками для прилож...

Singular Value Decomposition (SVD) Made Simple: Рефакторинг алгоритма Якоби в Python

В статье рассматривается алгоритм разложения по сингулярным значениям (SVD) и процесс рефакторинга автором алгоритма Якоби из GNU Scientific Library в Python/NumPy. Автор проверяет свою функцию SVD, созданную "на скорую руку", с помощью функции np.linalg.svd() и подчеркивает полезность SVD в классической статистике и машинном обучении.

Раскрытие галлюцинаций LLM: Метрики для выявления правдивости в ответах на вопросы

В этой статье рассматривается актуальная тема галлюцинаций LLM в исследованиях ИИ, подчеркивая значительные последствия ошибок или лжи, создаваемых большими языковыми моделями. В статье рассматриваются метрики для обнаружения и измерения галлюцинаций в рабочих процессах ответов на вопросы, с точностью 90 % для вопросов в закрытом домене и 70 % для вопросов в открытом домене.

Unveiling Hidden Patterns: Реализация спектральной кластеризации с нуля на Python

Спектральная кластеризация, сложная форма машинного обучения, преобразует данные в форму с пониженной размерностью и применяет кластеризацию k-means. Реализация спектральной кластеризации с нуля на Python была непростой задачей, но результаты оказались идентичны модулю scikit-learn, а самой сложной частью стало вычисление собственных значений и собственных векторов нормализованной матрицы Лапл...

Упрощение проверки вакцинации с помощью Amazon Textract: пошаговое руководство

Amazon Textract - это ML-сервис, который с высокой точностью извлекает текст и данные из отсканированных документов, автоматизируя обработку документов для различных целей. Он предлагает решение для упрощения проверки статуса прививок, предоставляя точную информацию из карт прививок с помощью запросов Amazon Textract.

Разгадка секретов RNN: Математические основы и реализация на Python

Появление таких инструментов, как AutoAI, может снизить значимость традиционных навыков машинного обучения, но глубокое понимание основополагающих принципов ML по-прежнему будет востребовано. Эта статья посвящена математическим основам рекуррентных нейронных сетей (РНС) и их использованию для выявления последовательных закономерностей в данных временных рядов.

Boosting BERT: ускорение времени вывода с помощью поиска нейронной архитектуры и автоматической настройки модели в SageMaker

В этой статье демонстрируется, как поиск нейронной архитектуры может быть использован для сжатия точно настроенной модели BERT, что повышает производительность и сокращает время вывода. Применение структурной обрезки позволяет уменьшить размер и сложность модели, что приводит к ускорению времени отклика и повышению эффективности использования ресурсов.

Раскрытие потенциала машинного обучения PySpark

Spark ML - это библиотека с открытым исходным кодом для высокопроизводительного хранения данных и классических алгоритмов машинного обучения. В статье демонстрируется демонстрация PySpark, предсказывающая политические пристрастия с помощью синтетического набора данных, рассказывается об использовании данных Spark и процессе установки.

Использование возможностей графического и геометрического ML: выводы и инновации на 2024 год

В этой статье авторы обсуждают теорию и архитектуры графовых нейронных сетей (ГНС) и подчеркивают появление графовых трансформаторов как тенденции в графовом ML. Они исследуют связь между MPNN и трансформерами, показывая, что MPNN с виртуальным узлом может имитировать трансформер, и обсуждают преимущества и ограничения этих архитектур с точки зрения выразительности.

Раскрытие потенциала генеративного ИИ: генерация синтетических данных с помощью GANs

Генеративные адверсарные сети (GAN) произвели революцию в искусственном интеллекте, создавая реалистичные изображения и языковые модели, но их понимание может быть сложным. Эта статья упрощает GAN, фокусируясь на генерации синтетических данных математических функций, и объясняет различие между дискриминантными и генеративными моделями, которые составляют основу GAN.

Достижения в области графического и геометрического ML: приложения и прорывы в 2024 году

В 2023 году доминировали геометрические методы и приложения ML, а также заметные прорывы в структурной биологии, включая открытие двух новых антибиотиков с помощью GNN. Сближение ML и экспериментальных методов в автономных молекулярных открытиях является растущей тенденцией, как и использование Flow Matching для более быстрой и детерминированной выборки траекторий.

Раскрытие потенциала великих аналитиков данных: 6 навыков для невероятной эффективности

Чтобы стать отличным аналитиком данных, необходимо развивать правильные навыки, включая свободное владение SQL, основы статистики и глубокие знания предметной области. Эти навыки позволяют аналитикам находить творческие решения, эффективно выполнять качественную работу и открывать ценные сведения.

Unleashing the Power of Text Embeddings: Преобразование приложений для финансового поиска с помощью Amazon Bedrock Cohere

Предприятия могут использовать текстовые вкрапления, созданные с помощью машинного обучения, для анализа неструктурированных данных и извлечения полезных сведений. Многоязычная модель встраивания Cohere, доступная на Amazon Bedrock, обеспечивает улучшенное качество документов, поиск для приложений RAG и экономически эффективное сжатие данных.

Раскройте мощь LDA: Практическое руководство по эффективному тематическому моделированию

Откройте для себя возможности Latent Dirichlet Allocation (LDA) для эффективного моделирования тем в машинном обучении и науке о данных. Узнайте, как LDA может применяться не только в текстовых данных, например, в интернет-магазинах и анализе потоков кликов, и как его можно интегрировать с другими вероятностными моделями для создания персонализированных рекомендаций.

Революция в гольфе: облачное отслеживание мячей поднимает PGA TOUR на новую высоту

PGA TOUR разрабатывает систему отслеживания положения мяча нового поколения, использующую компьютерное зрение и методы машинного обучения для определения местоположения мячей для гольфа на путтинг-грине. Система, разработанная инновационным центром Amazon Generative AI, успешно отслеживает положение мяча и предсказывает его координаты для отдыха.

Оптимизация рабочего процесса утверждения и продвижения ML-моделей с помощью человеческого вмешательства

В этой статье рассматривается масштабируемая платформа MLOps, автоматизирующая рабочий процесс утверждения и продвижения ML-моделей с помощью таких сервисов AWS, как Lambda, API Gateway, EventBridge и SageMaker. Решение включает в себя шаг вмешательства человека для утверждения модели перед переходом на следующий уровень среды.

OpenAI раскрывает: Модели искусственного интеллекта невозможны без материалов, защищенных авторским правом

Компания OpenAI признала необходимость использования материалов, защищенных авторским правом, при разработке таких инструментов ИИ, как ChatGPT, заявив, что без этого было бы "невозможно". Практика соскабливания контента без разрешения стала предметом пристального внимания, поскольку такие модели ИИ, как ChatGPT и DALL-E, опираются на большое количество обучающих данных из публичного Интернета.

Потоковая передача ответов в режиме реального времени: Повышение задержки и интерактивности с помощью моделей Llama 2 на Amazon SageMaker

Amazon SageMaker теперь поддерживает потоковую передачу ответов для выводов в реальном времени, обеспечивая интерактивный опыт и более быстрое время отклика в приложениях генеративного ИИ, таких как чат-боты и виртуальные помощники. В этой статье рассказывается о том, как решить проблемы задержки и реализовать это решение с помощью SageMaker и моделей Llama 2.

Усовершенствование нейронных сетей: Раскрытие возможностей абляционного тестирования

Основные моменты статьи: Отказоустойчивое тестирование нейронных сетей и архитектур ML для повышения надежности. Тестирование методом абляции позволяет выявить критические детали, снизить сложность и повысить отказоустойчивость. Три типа тестов на абляцию: нейронная, функциональная и входная абляция.

Unlocking Insights: Извлечение текста из документов с помощью Amazon Textract

Клиенты AWS из сферы здравоохранения, финансов и государственного сектора теперь могут извлекать ценные сведения из документов, хранящихся в Amazon S3, используя интеллектуальную обработку документов (IDP) AWS с помощью сервисов искусственного интеллекта, таких как Amazon Textract. Предлагаются два решения: сценарий на Python для быстрой обработки и готовое развертывание с использованием AWS C...

Рост числа специалистов по работе с данными, ориентированных на стоимость, в 2024 году

В 2024 году команды специалистов по работе с данными столкнутся с новой реальностью - они должны будут ориентироваться на окупаемость инвестиций и эффективность, поскольку в последние годы финансирование и рост значительно сократились. Чтобы справиться с этой ситуацией, специалисты по работе с данными должны запрашивать отзывы у заинтересованных сторон и решать проблемы, требующие улучшения, ч...

Оптимизация управления жизненным циклом Data Science с помощью AWS и Wipro

Сотрудничество Wipro с AWS помогает организациям преодолеть проблемы управления изолированными решениями в области науки о данных, обеспечивая автоматизацию, масштабируемость и качество моделей. Внедряя Amazon SageMaker, Wipro решает проблемы совместной работы, масштабируемости, MLOps и повторного использования для своих клиентов.

Раскрытие истины: тестирование оценок производительности машинного обучения с помощью mlscorecheck

В статье рассматривается использование пакета Python mlscorecheck для проверки соответствия заявленных оценок производительности машинного обучения и экспериментальных установок. Пакет mlscorecheck предоставляет численные методы для определения того, могут ли заявленные оценки быть результатом заявленного эксперимента.

Раскрытие скрытой предвзятости: усовершенствование деревьев принятия решений и случайных лесов

В недавнем исследовании изучается, как деревья решений и случайные леса, широко используемые в машинном обучении, страдают от предвзятости из-за предположения о непрерывности признаков. В исследовании предложены простые методы, позволяющие уменьшить эту погрешность. Результаты показали, что при зеркальном отражении признаков эффективность ухудшается на 0,2 процентных пункта.

Demystifying Principal Component Analysis (PCA) with C#: Упрощение снижения размерности для обнаружения аномалий, визуализации и машинного обучения

Анализ главных компонент (PCA) - это сложная техника, используемая для уменьшения размерности, которая включает в себя две основные методики: классическую и неклассическую. В статье обсуждаются проблемы реализации PCA с использованием классической техники и демонстрируется реализация на C# на подмножестве набора данных Iris Dataset.

Реализация ArgSort() в C#: Сортировка массивов и списков с легкостью

В статье показано, как реализовать функцию ArgSort() на языке C#, приведены примеры кода для массивов и списков. Подчеркивается наличие перегрузки C# Array.Sort(a,b), которая позволяет выполнять сортировку по значениям в массиве.

Ускорение обучения больших языковых моделей с помощью Amazon SageMaker

Обучение большим языковым моделям (LLM) набрало популярность после выпуска таких популярных моделей, как Llama 2, Falcon и Mistral, но обучение в таких масштабах может быть сложным. Библиотека параллельной модели (SMP) Amazon SageMaker упрощает этот процесс благодаря новым возможностям, включая упрощенный пользовательский интерфейс, расширенную функциональность тензорного параллелизма и оптими...

Представляем Mixtral-8x7B: развертывание мощной модели НЛП одним щелчком мыши на Amazon SageMaker JumpStart

Большая языковая модель Mixtral-8x7B от Mistral AI теперь доступна на Amazon SageMaker JumpStart для легкого развертывания. Благодаря многоязыковой поддержке и превосходной производительности Mixtral-8x7B является привлекательным выбором для приложений NLP, предлагая более высокую скорость вывода и более низкие вычислительные затраты.

Революция в контакт-центрах: Использование генеративного ИИ для обеспечения исключительного клиентского опыта

Отличный клиентский опыт имеет решающее значение для дифференциации бренда и роста доходов, и 80% компаний планируют увеличить инвестиции в CX. SageMaker Canvas и генеративный искусственный интеллект могут революционизировать сценарии звонков в контакт-центрах, повышая эффективность, сокращая количество ошибок и улучшая качество поддержки клиентов.

Представляем Llama Guard: Защита моделей ИИ в Amazon SageMaker JumpStart

Модель Llama Guard теперь доступна для Amazon SageMaker JumpStart, обеспечивая защиту ввода и вывода при развертывании больших языковых моделей. Llama Guard - это открытая модель, которая помогает разработчикам защититься от создания потенциально рискованных результатов, что позволяет легко внедрять лучшие практики и улучшать открытую экосистему.

Использование возможностей Amazon SageMaker: Защита данных с помощью обнаружения аномалий

По мере расширения цифрового пространства заказчики сталкиваются с растущими угрозами безопасности и уязвимостями. Amazon Security Lake и Amazon SageMaker предлагают новое решение, централизуя и стандартизируя данные о безопасности, а также используя машинное обучение для обнаружения аномалий.

Оптимизация операций ML в масштабе с помощью ускорителя Machine Learning Ops от PwC

Ускоритель PwC Australia Machine Learning Ops Accelerator, построенный на базе собственных сервисов AWS, упрощает процесс внедрения ML-моделей от разработки до производственного развертывания в масштабе. Ускоритель включает семь ключевых интегрированных возможностей для обеспечения непрерывной интеграции, непрерывной доставки, непрерывного обучения и непрерывного мониторинга моделей ML.

Хроники искусственного интеллекта: Разгадка шумихи и влияния 2023 года

Генеративный искусственный интеллект в 2023 году захватил технологическую индустрию, доминируя в заголовках и вызывая споры. На фоне появления фигур, связанных с ИИ, у нетехнических людей возникает путаница в том, кому доверять, какие продукты ИИ использовать и представляет ли ИИ угрозу для их жизни и работы. Кроме того, неумолимый темп исследований в области машинного обучения продолжает вызы...

Разблокирование информации в режиме реального времени: MongoDB и SageMaker Canvas революционизируют процесс принятия решений

В статье рассматриваются проблемы, с которыми сталкиваются отрасли, не имеющие прогнозов в реальном времени, такие как финансы, розничная торговля, управление цепочками поставок и логистика. В ней подчеркивается потенциал использования управления данными временных рядов в MongoDB и Amazon SageMaker Canvas для преодоления этих проблем и принятия решений на основе данных.

Раскрытие аномалий: Сравнительный анализ методов обнаружения выбросов

В этой статье рассматриваются алгоритмы машинного обучения для выявления выбросов и их применение к статистике биты Главной лиги бейсбола на 2023 год. Сравниваются четыре алгоритма: Elliptic Envelope, Local Outlier Factor, One-Class Support Vector Machine with Stochastic Gradient Descent и Isolation Forest. Цель - получить представление об их поведении и ограничениях, чтобы определить, какой а...

Раскрытие потенциала ML: Создание решений без кода с помощью Amazon DocumentDB и SageMaker Canvas

Компания Amazon объявила об интеграции Amazon DocumentDB с Amazon SageMaker Canvas, позволяющей пользователям строить ML-модели без кодирования. Эта интеграция позволяет компаниям анализировать неструктурированные данные, хранящиеся в Amazon DocumentDB, и создавать прогнозы, не прибегая к услугам специалистов по разработке данных и науке о данных.

Сила экспоненциальной скользящей средней: Понимание анализа временных рядов

В этой статье рассматривается логика, лежащая в основе фундаментального алгоритма градиентного спуска, и особое внимание уделяется экспоненциальной скользящей средней. В ней рассматривается мотивация метода, его формула и математическая интерпретация распределения весов.

Революционный мониторинг горного оборудования с помощью AWS-прототипирования и компьютерного зрения

ICL, международная производственная и горнодобывающая корпорация, разработала собственные возможности машинного обучения и компьютерного зрения для автоматического мониторинга своего горнодобывающего оборудования. При поддержке программы AWS Prototyping они смогли создать на AWS фреймворк с использованием Amazon SageMaker для извлечения изображения с 30 камер с возможностью масштабирования до ...

Раскрытие возможностей RAG: усиление стабильной диффузии текста к изображениям

Генерация текста в изображения - быстро развивающаяся область ИИ, а Stable Diffusion позволяет пользователям создавать высококачественные изображения за считанные секунды. Использование технологии Retrieval Augmented Generation (RAG) улучшает подсказки для моделей Stable Diffusion, позволяя пользователям создать собственного помощника ИИ для генерации подсказок.

Революция в области рекомендаций вакансий: Упорядоченная обработка данных Talent.com с помощью Amazon SageMaker

Компания Talent.com в сотрудничестве с AWS разработала систему рекомендаций по работе с использованием глубокого обучения, которая обрабатывает 5 миллионов ежедневных записей менее чем за 1 час. Система включает в себя разработку функций, проектирование архитектуры модели глубокого обучения, оптимизацию гиперпараметров и оценку модели, и все это выполняется на Python.

Дебаты о разведке: раскрытие истины, скрывающейся за ChatGPT

ChatGPT от OpenAI, новаторская языковая модель ИИ, вызвала восторг своими впечатляющими способностями, в том числе отличными результатами на экзаменах и игрой в шахматы. Однако скептики утверждают, что настоящий интеллект не следует путать с запоминанием, что привело к появлению научных исследований, изучающих это различие и выдвигающих аргументы против AGI.

Повышение эффективности рабочего процесса ML: Представление пространств SageMaker Studio и инструментов генеративного ИИ

Amazon SageMaker Studio теперь предлагает полностью управляемый редактор кода на базе Code-OSS, а также JupyterLab и RStudio, позволяя разработчикам ML настраивать и масштабировать свои IDE с помощью гибких рабочих пространств, называемых Spaces. Эти пространства обеспечивают постоянное хранение и конфигурации времени выполнения, повышая эффективность рабочего процесса и позволяя легко интегри...

Создайте свой собственный тренажерный зал искусственного интеллекта: Погружение в глубокое Q-обучение

Погрузитесь в мир искусственного интеллекта и создайте тренажер глубокого обучения с подкреплением с нуля. Получите практический опыт и создайте свой собственный тренажер для обучения агента решению простой задачи, заложив основу для создания более сложных сред и систем.

Революционная доставка на последнюю милю: Оптимизация управления трудовыми ресурсами с помощью Amazon Forecast и AWS Step Functions

Компания Getir, пионер в области сверхбыстрой доставки продуктов питания, внедрила комплексную систему управления персоналом с помощью Amazon Forecast и AWS Step Functions, что позволило на 70 % сократить время моделирования и на 90 % повысить точность прогнозирования. Этот комплексный проект рассчитывает потребности в курьерах и решает проблему распределения смен, оптимизируя графики смен и м...

Раскрытие скрытых закономерностей: кластеризация спектральных данных на C#

Спектральная кластеризация - это сложный метод машинного обучения, который позволяет выявить закономерности в данных. Ее реализация включает вычисление матриц сродства и Лапласиана, вложение собственных векторов и выполнение кластеризации k-means.

Использование возможностей классических вычислений в нейронных сетях

В этой статье рассматривается важность классических вычислений в контексте искусственного интеллекта, подчеркивается их доказуемая корректность, сильное обобщение и интерпретируемость по сравнению с ограничениями глубоких нейронных сетей. В статье утверждается, что разработка систем ИИ, обладающих этими навыками классических вычислений, имеет решающее значение для создания интеллектуальных аге...

Ускорение трансформации технологической компании Vodafone: Навыки ML с AWS DeepRacer и Accenture

К 2025 году компания Vodafone превратится в технологическую компанию, планируя, что 50 % ее сотрудников будут заниматься разработкой программного обеспечения, а 60 % цифровых услуг будут предоставляться собственными силами. Чтобы поддержать этот переход, Vodafone сотрудничает с Accenture и AWS для создания облачной платформы и участвует в конкурсе AWS DeepRacer, чтобы улучшить свои навыки маши...

Предотвращение галлюцинаций ИИ: Использование векторной базы данных Pinecone и Llama-2 для создания дополненного поиска

Такие LLM, как Llama 2, Flan T5 и Bloom, необходимы для использования в разговорном ИИ, но для обновления их знаний требуется переобучение, что требует много времени и средств. Однако с помощью технологии Retrieval Augmented Generation (RAG), использующей Amazon Sagemaker JumpStart и векторную базу данных Pinecone, LLM можно развернуть и постоянно обновлять актуальную информацию, чтобы предотв...

Оптимизация процесса MLO с помощью конвейеров Amazon SageMaker и действий GitHub

MLOps необходим для интеграции моделей машинного обучения в существующие системы, а Amazon SageMaker предлагает такие функции, как Pipelines и Model Registry, которые упрощают этот процесс. В этой статье приводится пошаговая реализация создания пользовательских шаблонов проектов, которые интегрируются с GitHub и GitHub Actions, обеспечивая эффективную совместную работу и развертывание ML-моделей.

Экономное обучение: Эффективное обучение моделей GPT NeoX и Pythia с помощью AWS Trainium

Большие языковые модели (LLM), такие как GPT NeoX и Pythia, набирают популярность, имея миллиарды параметров и впечатляющую производительность. Обучение этих моделей на AWS Trainium является экономичным и эффективным благодаря таким оптимизациям, как вращательное позиционное встраивание (ROPE) и методы частичного вращения.