Моделі ML можуть розробляти оптимальні клієнтські подорожі, поєднуючи глибоке навчання з методами оптимізації. Традиційні моделі атрибуції не справляються з цим завданням через позиційну атрибуцію, контекстну сліпоту та статичні значення каналів.
LSTM, представленные в 1997 году, возвращаются с xLSTM как потенциальные конкуренты LLM в глубоком обучении. Способность запоминать и забывать информацию на временных интервалах отличает LSTM от RNN, что делает их ценным инструментом в языковом моделировании.