ML-модели могут разрабатывать оптимальные путешествия клиентов, сочетая глубокое обучение с методами оптимизации. Традиционные модели атрибуции не справляются с поставленной задачей из-за неагностичности атрибуции, слепоты контекста и статичных значений каналов.
LSTM, представленные в 1997 году, возвращаются с xLSTM как потенциальные конкуренты LLM в глубоком обучении. Способность запоминать и забывать информацию на временных интервалах отличает LSTM от RNN, что делает их ценным инструментом в языковом моделировании.