Новостная лента об искусственном интеллекте и машинном обучении

Главные новости и публикации каждый день! Будьте на шаг впереди: узнавайте первыми про новые идеи, тренды и инновации в сфере технологий.

Эффективная регрессия гауссовых процессов на C#

Инверсия матрицы Ньютона была успешно использована в регрессии гауссовского процесса для повышения эффективности, точности и устойчивости. Демонстрация показала высокую точность прогнозирования целевых значений для синтетических данных со сложной базовой структурой.

Методы пороговой обработки для преодоления неопределенности модели

Пороговая оценка - это ключевой метод управления неопределенностью модели в машинном обучении, позволяющий в сложных случаях прибегать к вмешательству человека. В контексте обнаружения мошенничества пороговое значение помогает сбалансировать точность и эффективность, откладывая неопределенные прогнозы на рассмотрение человека, что повышает доверие к системе.

Проблема объяснения суперпозиции нейронных сетей

Нейронные сети сталкиваются с проблемой суперпозиции, когда один нейрон представляет несколько признаков. Ключевую роль в возникновении суперпозиции играют нелинейность и разреженность признаков.

Исследование конечных нормальных смесей в регрессии

Линейная регрессия может обрабатывать нелинейные данные с помощью конечных нормальных смесей. Такой подход обеспечивает гибкость и интерпретируемость, что делает ее мощным инструментом машинного обучения. Моделирование модели смеси для регрессии с помощью MCMC-выборки показывает, как восстановить компоненты с помощью байесовского вывода.

Увеличение интервалов предсказания с помощью конформных предсказаний

Модели машинного обучения могут предоставлять интервалы прогнозирования для учета неопределенности результатов, помогая принимать обоснованные решения. Конформное предсказание предлагает проницательные интервалы предсказания со слабыми теоретическими гарантиями, повышая точность прогнозов.

MIT приветствует Фриду Полли: приглашенный ученый в области инноваций

Фрида Полли, новый приглашенный инновационный ученый MIT, перешла от нейронаук к предпринимательству, став сооснователем успешной компании pymetrics, занимающейся разработкой искусственного интеллекта. Работа Полли привела к созданию закона об алгоритмической предвзятости, а сотрудничество с Сендхилом Муллайнатаном позволило соединить поведенческие и компьютерные науки в Массачусетском техноло...

Boltz-1: модель биомолекулярных структур с открытым исходным кодом

Ученые Массачусетского технологического института выпустили Boltz-1, модель искусственного интеллекта с открытым исходным кодом, конкурирующую с AlphaFold3 для предсказания структуры белков. Цель Boltz-1 - ускорить разработку лекарств и способствовать глобальному сотрудничеству в области биомолекулярного моделирования.

Риск утечки данных при использовании ИИ-инструмента для вербовки военнослужащих в Великобритании

ИИ-инструмент Amazon для набора персонала Министерства обороны Великобритании создает риск идентификации персонала. Другие правительственные системы искусственного интеллекта вызывают опасения по поводу утечки данных и возможных последствий.

Освоение регрессии Random Forest на C#

Машинное обучение регрессии случайного леса предсказывает значения с помощью деревьев решений. Демонстрация на C# показывает точность предсказания синтетических данных 0,9250 для обучения и 0,7250 для тестирования.

Стипендиат Маршалла 2025 года: Лара Озкан

Выпускница Массачусетского технологического института Лара Озкан названа 2025 стипендиатом Маршалла, которая будет учиться в Великобритании в аспирантуре по биологическим наукам и искусственному интеллекту. Отмечаются достижения Озкана в области исследований вычислительной биологии и этики искусственного интеллекта, что способствует укреплению здоровья женщин с помощью инноваций.

Чатботы с искусственным интеллектом: Определение расы и эмпатия

Цифровой мир предлагает поддержку в области психического здоровья через Reddit, а чат-боты с искусственным интеллектом, такие как GPT-4, обеспечивают сопереживающий ответ. Исследование изучает справедливость и качество поддержки психического здоровья на основе ИИ, выявляя риски и проблемы.

Оптимизация работы пользователей с помощью балансировки нагрузки SageMaker HyperPod

Amazon SageMaker HyperPod поддерживает крупномасштабные операции ML, позволяя нескольким пользователям одновременно работать над обучением моделей. В статье рассматриваются решения по балансировке нагрузки для узлов регистрации в кластерах HyperPod на базе Slurm, что позволяет повысить производительность и эффективность использования ресурсов.

Трансформация управления инвестициями с помощью искусственного интеллекта и Amazon SageMaker

Компании, работающие на рынках капитала, обращаются к облачным сервисам AWS и искусственному интеллекту для разработки стратегии, повышения эффективности исполнения и оптимизации управления рисками. Компания Clearwater Analytics использует Amazon SageMaker JumpStart для повышения производительности управления активами с помощью генеративных решений на основе искусственного интеллекта, что стал...

Сбалансированное регулирование ИИ и алгоритмов в здравоохранении

ИИ в здравоохранении призван снизить риск и определить приоритетность пациентов с высоким риском, но исследователи призывают усилить контроль, чтобы предотвратить дискриминацию в инструментах поддержки принятия решений по уходу за пациентами. Появление устройств с искусственным интеллектом, одобренных Управлением по контролю качества пищевых продуктов и лекарственных препаратов США, заставляет...

Расширьте свои возможности в области ML с помощью Amazon SageMaker Python SDK

В новом Amazon SageMaker Python SDK появился класс ModelTrainer, упрощающий обучение ML-моделей благодаря улучшенной интуитивности, упрощенному режиму сценариев и повышенной гибкости для распределенного обучения. Эта эволюция улучшает пользовательский опыт, облегчая переход от локальной разработки к облачному обучению с помощью упрощенных конфигураций и улучшенных контрактов гиперпараметров.

Осуществление мечты с помощью SQLite в производстве

SQLite становится готовой к производству базой данных для современных веб-приложений, предлагая простоту и экономичность. В отличие от клиент-серверных архитектур, однофайловая система SQLite снижает сложность и стоимость развертывания.

Освойте эти 3 навыка для успешной работы с данными в 2025 году

Ученым, изучающим данные и переходящим на руководящие должности, необходимы такие бизнес-навыки, как свободное владение финансовыми терминами, для реализации эффективных инициатив в области данных. Понимание финансовых терминов может помочь в разработке новых идей, повысить успех компании и даже договориться о более высокой зарплате. Знание цифр открывает двери для таких возможностей, как нало...

Представляем Pixtral 12B на Amazon SageMaker JumpStart

Pixtral 12B, передовая модель языка зрения от Mistral AI, превосходит другие модели при решении текстовых и мультимодальных задач. Она имеет новую архитектуру с 400-миллионным кодировщиком зрения и 12-миллиардным декодером трансформации, обеспечивая высокую производительность и скорость понимания изображений и документов.

Раскрытие сингулярных значений матрицы

Сингулярные значения матриц можно вычислить с помощью метода SVD, но в работе К. Р. Джонсона предлагается метод нижнего предела для оценки наименьшего сингулярного значения. Ранние гибридные конструкции самолетов, сочетающие поршневые и реактивные двигатели, были быстро отброшены в пользу чисто реактивных двигателей из-за быстрого технологического прогресса.

ИИ и наука о данных: Трансформация бизнес-стратегии

Семинар для руководителей под руководством консультанта по науке о данных помогает компаниям эффективно интегрировать ИИ. На семинаре представлена схема успешной стратегии, применимая к любой отрасли.

Построение регрессии дерева решений с помощью C# в Visual Studio

Статья: 'Decision Tree Regression from Scratch Using C#' представляет демонстрационный пример реализации регрессии дерева решений без рекурсии и указателей. Точность модели на обучающих данных высока, но перебор с подгонкой является проблемой, решаемой с помощью ансамблевых методов.

ИИ-поддержка продаж компании Syngenta с помощью агентов Amazon Bedrock

Компании Syngenta и AWS совместно разработали ИИ Cropwise на базе Amazon Bedrock Agents, чтобы упростить выбор семян для фермеров и торговых представителей. Генеративный ИИ преобразует процесс принятия решений, предлагая персонализированные рекомендации в масштабах компании для более эффективного и точного процесса выбора.

Повышение эффективности выводов SageMaker с помощью быстрого загрузчика моделей для LLM

Amazon SageMaker Fast Model Loader сокращает время развертывания LLM в 15 раз за счет потоковой передачи весов моделей из Amazon S3. Эта инновация преобразует развертывание LLM, обеспечивая более быстрое время загрузки для более эффективных приложений ИИ.

Создание синтетических данных с помощью нейронных сетей C#

Генерируйте синтетические данные для регрессии машинного обучения с помощью нейронной сети с заданными параметрами. Упростите генерацию сложных данных с помощью настраиваемой функции на C#.

Революция в искусственном интеллекте с помощью фотонных процессоров

Ученые Массачусетского технологического института разработали фотонный чип для глубоких вычислений нейронных сетей, добившись высокой скорости и точности. Чип может произвести революцию в глубоком обучении для таких приложений, как лидар и высокоскоростные телекоммуникации.

Повышение точности OCR с помощью LLM с открытым исходным кодом

Компания Open Food Facts использует машинное обучение для расширения своей базы данных по продуктам питания за счет сокращения количества нераспознанных ингредиентов и повышения точности данных. Проект демонстрирует успех создания собственной модели, превосходящей существующие решения на 11 %.

Максимизация видимости AWS Trainium и Inferentia с помощью Datadog

Интеграция Datadog с AWS Neuron оптимизирует ML-нагрузки на инстансах Trainium и Inferentia, обеспечивая высокую производительность и мониторинг в реальном времени. Интеграция с Neuron SDK обеспечивает глубокое наблюдение за выполнением модели, задержкой и использованием ресурсов, что позволяет эффективно обучать и делать выводы.

Оптимизация работы SageMaker Studio с помощью AWS CDK

Узнайте, как настроить конфигурации жизненного цикла для доменов Amazon SageMaker Studio, чтобы автоматизировать такие действия, как предустановка библиотек и выключение неработающих ядер. Amazon SageMaker Studio - это первая среда разработки, созданная для ускорения сквозной разработки ML, предлагающая настраиваемые профили пользователей доменов и общие рабочие пространства для эффективного у...

Повышение скорости выводов в режиме реального времени с помощью Rad AI и Amazon SageMaker

Флагманский продукт Rad AI, Rad AI Impressions, использует LLM для автоматизации отчетов по радиологии, экономя время и сокращая количество ошибок. Их модели искусственного интеллекта генерируют впечатления для миллионов исследований ежемесячно, принося пользу тысячам радиологов по всей стране.

Освоение торговли между балансом и дисперсией: визуальное руководство и примеры кода

Реферат: Компромисс между погрешностью и дисперсией влияет на прогностические модели, балансируя между сложностью и точностью. На реальных примерах показано, как недоучет и переучет влияют на производительность модели.

Революция в здравоохранении с помощью машинного обучения

Марзиех Гассеми сочетает любовь к видеоиграм и здоровью в своей работе в Массачусетском технологическом институте, сосредоточившись на использовании машинного обучения для повышения справедливости в здравоохранении. Исследовательская группа Гассеми в LIDS изучает, как предвзятость данных о здоровье может повлиять на модели машинного обучения, подчеркивая важность разнообразия и инклюзивности в...

Представляем медицинские LLM от John Snow Labs на Amazon SageMaker JumpStart

Модели Medical LLM от John Snow Labs на Amazon SageMaker Jumpstart оптимизируют задачи медицинского языка, превосходя GPT-4o в резюмировании и ответах на вопросы. Эти модели повышают эффективность и точность работы медицинских работников, поддерживая оптимальный уход за пациентами и результаты медицинского обслуживания.

Повышение фактической согласованности: Сила дебатов на LLM

В дебатах LLM используются синтетические данные для обучения более мощных языковых моделей, превосходящих существующие методы. Amazon Bedrock позволяет использовать различные методы LLM для улучшения согласованности фактов в процессе принятия решений.

Управление данными для масштабного ML

Amazon DataZone позволяет организациям организовать управление данными в масштабе, способствуя развитию аналитики самообслуживания и инновационных проектов ML. Финансовые организации могут использовать Amazon DataZone для проведения эффективных маркетинговых кампаний, обеспечивая безопасный доступ к массивам данных клиентов.

Эффективная k-NN регрессия в C#

Краткое описание: В ноябрьском выпуске журнала Microsoft Visual Studio Magazine за 2024 год представлена демонстрация регрессии k-NN с использованием C#, известной своей простотой и интерпретируемостью. Эта техника предсказывает числовые значения на основе ближайших обучающих данных, а демонстрация показывает точность и процесс предсказания.

Освоение управления клиентами на основе данных

Построение системы CBM позволяет оптимизировать ценообразование, прогнозировать будущие доходы и улучшать процесс принятия решений с помощью ELT, моделирования оттока и информационных панелей. Расширенные модули могут еще больше увеличить генерирование стоимости, обеспечивая вашей компании конкурентное преимущество.

Виртуоз: освоение модели

Джордан Рудесс дебютировал с искусственным интеллектом джамботом в Массачусетском технологическом институте, продемонстрировав уникальный дуэт с машиной во время живого концерта. Известный клавишник сотрудничает с исследователями Массачусетского технологического института, чтобы изучить «симбиотическую виртуозность» в создании музыки в режиме реального времени.

Максимально эффективное использование двоичных вкраплений в Amazon Titan

Компания Amazon представила Binary Embeddings для Amazon Titan Text Embeddings V2 в Amazon Bedrock и OpenSearch Serverless, сократив использование памяти и расходы. Amazon Bedrock предлагает высокопроизводительные базовые модели и возможности для генеративных приложений ИИ, а OpenSearch Serverless поддерживает бинарные векторы для современного ML-поиска.

Разблокировка чешских текстов: NER с XLM-RoBERTa

Реферат: Разработчик делится опытом внедрения модели NLP для обработки документов на чешском языке с упором на идентификацию сущностей. Модель была обучена на 710 PDF-документах с использованием ручной маркировки и для повышения эффективности избегала подходов на основе ограничительных рамок.

Массачусетский технологический институт выпускает четырех стипендиатов Родса 2025 года

Студенты Массачусетского технологического института Йиминг Чен '24 и Вилхем Гектор названы стипендиатами Родса 2025 года за новаторскую работу в области безопасности искусственного интеллекта и за то, что стали первыми гражданами Гаити, получившими престижную стипендию. При поддержке преподавателей и комитетов Массачусетского технологического института они будут учиться в аспирантуре Оксфордск...

Откройте для себя Stable Diffusion 3.5 Large на Amazon SageMaker!

Stability AI выпустила Stable Diffusion 3.5 Large на Amazon SageMaker JumpStart, предлагающую мощные возможности преобразования текста в изображение. Имея 8,1 миллиарда параметров, модель позволяет создавать высококачественные изображения для различных отраслей, повышая креативность и эффективность.

Оптимизация процесса возмещения ущерба при ДТП с помощью Amazon Bedrock

Решение, использующее генеративный ИИ AWS, например Amazon Bedrock и OpenSearch, упрощает оценку повреждений автомобилей для страховщиков, ремонтных мастерских и менеджеров автопарков. Преобразуя изображения и метаданные в числовые векторы, этот подход упрощает процесс и предоставляет ценные сведения для принятия обоснованных решений в автомобильной промышленности.

Улучшение управления моделями с помощью Amazon SageMaker

Amazon SageMaker теперь позволяет пользователям регистрировать ML-модели с помощью Model Cards, упрощая управление и прозрачность для отраслей с высокими ставками. Интеграция Model Cards с Model Registry упрощает процессы управления и утверждения моделей для принятия более эффективных решений.

Революционный поиск изображений с помощью вкраплений Amazon Titan

Технология визуального поиска в электронной коммерции улучшает поиск товаров, позволяя пользователям искать их с помощью изображений. Amazon Bedrock предлагает высокопроизводительные модели ИИ для генеративных приложений ИИ, повышающих точность поиска и удобство работы пользователей.

Агенты Amazon Bedrock: Ваш ключ к персонализированному маркетингу

Генеративный искусственный интеллект позволяет эффективно создавать персонализированный маркетинговый контент, повышая вовлеченность и продажи. Агенты Amazon Bedrock Agents позволяют маркетологам предоставлять персонализированную рекламу с индивидуальным креативным контентом и целевой сегментацией клиентов.

Дилемма дизайна: перевернуть сценарий

Лаборатория DeCoDE Массачусетского технологического института расширяет границы в машиностроении, сочетая машинное обучение и генеративный искусственный интеллект для повышения точности проектирования. Их проект Linkages демонстрирует в 28 раз большую точность и в 20 раз более быстрые результаты по сравнению с предыдущими методами, демонстрируя потенциал для более широкого применения в машинос...

Переосмысление разнообразия: Эволюция искусственного интеллекта

В рамках программы OxML 2024 обсуждался переход от доказательства концепции (PoC) к доказательству ценности (PoV) в области ИИ с упором на измеримое влияние на бизнес. Реза Хоршиди подчеркнул важность оценки не только технической реализуемости, но и потенциальной бизнес-ценности и влияния систем ИИ.

Псевдоинверсная матрица: Раскрыт итеративный алгоритм

В статье представлен новый элегантный итерационный метод вычисления псевдоинверса матрицы Мура-Пенроуза. Метод использует градиент Calculus и итерационный цикл для приближения к истинному псевдоинверсу, что напоминает технику обучения нейронных сетей.

История успеха SageMaker в Zalando

Zalando решает проблемы ценообразования с помощью алгоритмических решений для оптимальных скидок и максимизации прибыли. Подход «прогнозирование-оптимизация» использует прошлые данные для определения спроса и уровня запасов на уровне товара, расширяя обучающие наборы для точных прогнозов в зависимости от скидки.

Разблокирование информации с помощью Amazon Bedrock: Анализ аудиозаписей Amazon Transcribe

Генеративный искусственный интеллект преобразует анализ аудио- и видеоматериалов, извлекая из речевых данных глубокие знания и эмоции. Большие языковые модели (LLM) позволяют проводить расширенный анализ настроения, определять персоны и генерировать контент из разговоров, революционизируя ценность для бизнеса с помощью речевой аналитики.

Создание потрясающих пользовательских интерфейсов для приложений с искусственным интеллектом с помощью AWS и Python

Генеративный ИИ открывает новые возможности, но ученые, занимающиеся изучением данных, испытывают трудности с разработкой пользовательского интерфейса. AWS упрощает создание приложений для генеративного ИИ благодаря Streamlit и таким ключевым сервисам, как Amazon ECS и Cognito.

Революционное преобразование клиентских поездок с помощью глубокого обучения

ML-модели могут разрабатывать оптимальные путешествия клиентов, сочетая глубокое обучение с методами оптимизации. Традиционные модели атрибуции не справляются с поставленной задачей из-за неагностичности атрибуции, слепоты контекста и статичных значений каналов.

Оптимизация моделей искусственного интеллекта

Модели ИИ, такие как LLaMA 3.1, требуют большого объема памяти GPU, что затрудняет их доступность на потребительских устройствах. Исследования в области квантования предлагают решение для уменьшения размера модели и обеспечения возможности локального запуска моделей ИИ.

Защита больших языковых моделей

Теперь LLM можно запускать локально, что обеспечивает повышенную конфиденциальность и контроль над настройками модели, при этом доступны модели различных размеров. Квантование сокращает расход памяти, а локальные реализации оказываются экономически эффективными по сравнению с облачными решениями.

Разблокировка доступа к учетной записи Azure Storage

Сетевой доступ к учетным записям Azure Storage: Изучите конечные точки служб и частные конечные точки для безопасного обмена данными в корпоративных озерах данных. Узнайте о Azure Backbone, брандмауэре учетной записи хранилища, VNET, NSG и других способах обеспечения надежной глубинной защиты.

Мастерство обнаружения аномалий с помощью ансамблевого обучения

Модель Isolation Forest использует ансамблевое обучение для эффективного обнаружения аномалий в высокоразмерных данных путем выделения редких наблюдений. Она случайным образом выбирает признаки для изоляции выбросов, что делает ее надежной и точной для обнаружения аномалий.

Подводные камни предварительной обработки: Утечка данных: демистификация

Предварительная обработка данных может привести к их утечке, что повлияет на точность модели. Будьте осторожны с методами интерполяции недостающих значений, чтобы избежать утечки.

Оптимизация обработки документов с помощью потоков Amazon Bedrock Prompt Flows

Интеллектуальная обработка документов (IDP) на базе AI/ML революционизирует процесс обработки документов на производстве, в финансовой сфере и здравоохранении. Amazon Bedrock Prompt Flows обеспечивает масштабируемое, экономически эффективное и автоматизированное извлечение и обработку данных из документов с помощью бессерверных технологий и управляемых сервисов.

Мониторинг моделей в реальном времени с помощью Amazon SageMaker

Индивидуальный мониторинг моделей с помощью Amazon SageMaker имеет решающее значение для сценариев AI/ML в режиме реального времени. SageMaker Model Monitor предлагает расширенные возможности для мониторинга качества моделей и обработки запросов на многократную загрузку, ускоряя разработку специализированного мониторинга моделей.

Подводные камни конфиденциальности: Пределы минимизации данных

Принцип минимизации данных в машинном обучении предполагает сбор только основных данных для снижения рисков конфиденциальности. Нормативные акты по всему миру требуют ограничения целей и релевантности данных для оптимальной защиты информации.

Балансировка данных: Визуальное руководство по технике выборки

Предварительная обработка данных включает в себя такие методы, как вменение отсутствующих значений и перебор выборки для повышения точности классификационной модели. Методы переборки, недоборки и гибридной выборки помогают сбалансировать наборы данных для более точных прогнозов в задачах машинного обучения.

Освоение LLM с помощью математики средней школы

Статья рассказывает о внутреннем устройстве больших языковых моделей (LLM), начиная с базовой математики и заканчивая продвинутыми моделями ИИ, такими как GPT и архитектура Transformer. Подробный анализ охватывает вкрапления, внимание, softmax и многое другое, что позволяет воссоздать современные LLM с нуля.

Освойте классификацию Winnow с помощью C# в Visual Studio

В статье журнала Microsoft Visual Studio Magazine за октябрь 2024 года демонстрируется бинарная классификация алгоритма Winnow с использованием набора данных Congressional Voting Records Dataset. Обучение модели Winnow включает в себя корректировку весов на основе прогнозируемых и фактических результатов, при этом значение альфа обычно устанавливается на уровне 2,0.

Оптимизация ML-моделей: Сила цепочки

Метаморфоза ML - процесс объединения различных моделей в цепочку - может значительно повысить качество модели по сравнению с традиционными методами обучения. Дистилляция знаний переносит знания из большой модели в меньшую, более эффективную, в результате чего получаются более быстрые и легкие модели с улучшенной производительностью.

Максимизация аналитики звонков с помощью Amazon Q в QuickSight

Amazon Web Services предлагает такие решения в области искусственного интеллекта, как Post Call Analytics, которые позволяют повысить качество обслуживания клиентов за счет получения полезной информации из записей звонков. Amazon Q в QuickSight позволяет пользователям легко анализировать данные после звонка и создавать визуализации для принятия решений на основе данных.

Аварийное восстановление Amazon SageMaker с помощью настраиваемой EFS

Amazon SageMaker предлагает бесшовную платформу ML в рамках AWS. Новые функции, такие как SageMaker Studio, расширяют возможности совместной работы и аварийного восстановления данных для ученых и инженеров ML.

Революция в ML: реляционное глубокое обучение

Реляционное глубокое обучение (RDL) позволяет напрямую обучаться на реляционной базе данных, преобразуя таблицы в граф для эффективного решения задач ML. RDL устраняет шаги по разработке функций, обучаясь на сырых реляционных данных, повышая производительность и детализацию модели.

Упрощение проверки искусственного интеллекта

Исследователи Массачусетского технологического института разработали SymGen, чтобы помочь людям, проверяющим факты, быстро проверять ответы больших языковых моделей, предоставляя цитаты с прямыми ссылками на исходный документ, что ускоряет время проверки примерно на 20%. SymGen позволяет пользователям выборочно фокусироваться на определенных частях текста для обеспечения точности, что потенциа...

Освоение дискретизации: Визуальное руководство для начинающих

Узнайте 6 креативных способов разделения чисел на бины для предварительной обработки данных. Дискретизация преобразует непрерывные переменные в категориальные признаки для повышения эффективности модели.

Оптимизация обновления моделей

Дрейф данных и дрейф концепций - важнейшие факторы, влияющие на производительность ML-модели с течением времени. Понимание и решение этих проблем является ключевым фактором для поддержания точности и эффективности модели. Стратегии переобучения играют важную роль в снижении производительности, вызванной изменением структуры данных и взаимосвязей.

Edge AI с Amazon SageMaker и Qualcomm AI Hub

Инновационное решение Qualcomm и Amazon SageMaker обеспечивает сквозную настройку и развертывание моделей на границе. Разработчики могут использовать BYOM и BYOD для оптимизированных решений машинного обучения, нацеленных на развертывание на устройствах.

GraphMuse: Библиотека Python для музыкальных графиков

Python-библиотека GraphMuse использует графовые нейронные сети для анализа музыки, соединяя ноты в партитуре для создания непрерывного графика. Построенная на PyTorch и PyTorch Geometric, GraphMuse преобразует музыкальные партитуры в графики до x300 быстрее, чем предыдущие методы, революционизируя анализ музыки.

Максимальное использование Amazon SageMaker Studio с интеграцией EFS

Amazon SageMaker Studio предлагает интегрированные IDE, такие как JupyterLab и RStudio, для эффективных рабочих процессов ML. Пользователи могут создавать личные пространства с помощью Amazon EFS для беспрепятственного обмена данными и централизованного управления, обеспечивая индивидуальное хранение и межэкземплярный доступ к файлам.

Быстрое составление карт растительности Земли с помощью Amazon SageMaker

Мониторинг состояния растительности очень важен, но сложен. Геопространственные возможности Amazon SageMaker позволяют найти оптимальное решение и составить карту растительности всего за 20 минут.

Автоматизация генерации кода TypeScript для SaaS-коннекторов с помощью Claude от Anthropic

Генеративный ИИ преобразует программирование, предлагая интеллектуальную помощь и автоматизацию. AWS и SailPoint сотрудничают в создании ассистента кодирования с использованием технологии Anthropic на Amazon Bedrock для ускорения разработки SaaS-коннекторов. SailPoint специализируется на решениях по обеспечению безопасности корпоративной идентификации, гарантирующих правильный доступ к ресурса...

ИИ революционизирует обслуживание клиентов в Intact с помощью AWS

Финансовая корпорация Intact внедряет решение по обеспечению качества обслуживания вызовов (CQ) на основе искусственного интеллекта с помощью Amazon Transcribe, что позволяет обрабатывать на 1 500 % больше звонков, сократить время работы агентов на 10 % и эффективно получать ценные сведения о клиентах. Ключевыми факторами при принятии решения Intact стали возможности глубокого обучения и масшт...

SageMaker Core: Революционный Python SDK для Amazon SageMaker

Amazon SageMaker представляет SageMaker Core, SDK на языке Python для управления жизненным циклом ML. Этот SDK упрощает задачи с помощью объектно-ориентированных интерфейсов, заменяя длинные JSON-словари для более интуитивного опыта разработчика.

Представляем серию Bria 2.3 на Amazon SageMaker JumpStart

Bria AI представляет усовершенствованные модели генерации изображений в Amazon SageMaker JumpStart. Bria 2.3, 2.2 HD и 2.3 Fast предлагают высококачественные визуальные изображения для различных отраслей промышленности с опциями фотореализма, высокой четкости и оптимизации скорости.

Удобная маркировка данных с помощью Amazon SageMaker Ground Truth Plus

Amazon SageMaker Ground Truth - это сервис маркировки данных от AWS для различных типов данных, поддерживающий генеративный искусственный интеллект. Он предлагает возможность самостоятельного обслуживания и SageMaker Ground Truth Plus для эффективного управления проектами.

Раскрытие возможностей LDA

Линейный дискриминантный анализ (LDA) помогает выявить критические признаки данных в больших массивах данных, отличая важные признаки от менее значимых. LDA - это контролируемый метод, который уменьшает размерность и объясняет закономерности отказов, что делает его идеальным для анализа промышленных данных.

Освойте k-NN классификацию с помощью C#

Краткое содержание статьи: Implementing k-NN Classification Using C# в журнале Microsoft MSDN Magazine демонстрирует простоту и интерпретируемость метода k-nearest neighbors. Несмотря на чувствительность к обучающим данным, она отличается простотой реализации и впечатляющими результатами точности.

Python Made Simple: The Ultimate Guide

Google Colab, интегрированный с инструментами генеративного искусственного интеллекта, упрощает кодирование на Python. Изучайте Python легко, без установки, благодаря доступным функциям Google Colab.

Переход от Amazon Lookout к метрикам

Amazon Lookout for Metrics, служба обнаружения аномалий ML от Amazon, прекратит свою поддержку 10 октября 2025 года. Клиенты могут перейти на альтернативные сервисы AWS, такие как Amazon OpenSearch, CloudWatch, Redshift ML для обнаружения аномалий.

Размер образца Мастерство

A/B-тестирование против отклоняющего вывода: Выбор правильного размера выборки. Сравнение двух групп в A/B-тестировании или выбор репрезентативной выборки для вывода об отклонении имеет решающее значение для получения беспристрастных результатов. Понимание метрик успеха, таких как пропорции или абсолютные числа, является ключевым для точного проведения экспериментов.

Переход на должность инженера ML: Ваш следующий карьерный шаг

Переход от инженера-программиста к инженеру машинного обучения в компаниях FAANG включает 7 ключевых шагов, в том числе поиск мотивации, изучение основ ML, налаживание контактов и поиск своей ниши в сфере ML. Понимание своих интересов и стратегическое использование имеющихся навыков - вот что необходимо для успешного перехода.

Оптимизация Llama 3-подобных моделей с помощью TorchTitan на SageMaker

Предварительное обучение больших языковых моделей (LLM) с помощью библиотеки torchtitan ускоряет работу моделей, подобных Meta Llama 3, демонстрируя поддержку FSDP2 и FP8. Amazon SageMaker Model Training сокращает время и затраты, предлагая высокопроизводительную вычислительную инфраструктуру для ML.

Прорыв в области искусственного интеллекта: Нобелевская премия для пионеров машинного обучения

Джеффри Хинтон и Джон Хопфилд удостоены Нобелевской премии 2024 года за создание искусственных нейронных сетей, вдохновленных мозгом. Их работа произвела революцию в возможностях ИИ благодаря функциям хранения памяти и обучения, имитирующим человеческое познание.

Автоматизация прогнозирования временных рядов с помощью Amazon SageMaker

Прогнозирование временных рядов очень важно для предсказания будущих значений, но сталкивается с такими проблемами, как сезонность и ручная настройка. Amazon SageMaker AutoMLV2 упрощает этот процесс благодаря автоматизации, начиная с подготовки данных и заканчивая развертыванием модели.

Освоение регрессора K ближайших соседей

Регрессор ближайших соседей упрощает прогнозирование непрерывных величин, эффективно используя KD-деревья и Ball-деревья. Наглядное руководство с примерами кода для начинающих, сфокусированное на построении и вычислениях.

FormulaFeatures: Разблокирование предсказательной силы

FormulaFeatures - это инструмент для создания интерпретируемых моделей путем автоматической разработки кратких, высокопрогнозируемых признаков. Его цель - повысить точность и интерпретируемость таких моделей, как деревья решений, улучшив видимость прогнозов.

Успех Aviva: Создание надежной платформы MLOps с помощью Amazon SageMaker

Aviva, ведущая страховая компания, внедряет бессерверную платформу MLOps с помощью AWS и Amazon SageMaker для упрощения развертывания и мониторинга ML-моделей. Автоматизируя процессы ML, Aviva стремится повысить качество обслуживания клиентов и эффективно обрабатывать растущие объемы претензий.

Освоение YOLOv8: обучение пользовательских моделей с легкостью

Обучать модели компьютерного зрения с помощью YOLOv8 от Ultralytics теперь проще простого, используя Python, CLI или Google Colab. YOLOv8 славится точностью, скоростью и гибкостью, предлагая локальные или облачные варианты обучения, такие как Google Colab для повышения вычислительной мощности.

Максимальное использование Amazon Monitron: Доступ и альтернативы

Amazon Monitron, ML-сервис AWS для мониторинга промышленного оборудования, перестанет быть доступным для новых клиентов после 31 октября 2024 года. Существующие клиенты могут продолжать пользоваться сервисом до июля 2025 года, при этом новых функций не планируется. Изучите альтернативные решения в партнерской сети AWS для решения конкретных задач мониторинга.

Передовая программа MIT по музыкальным технологиям

MIT запускает новую магистерскую программу по музыкальным технологиям и вычислениям с междисциплинарным сотрудничеством. В центре внимания - технические исследования в области музыкальных технологий с гуманистическими и художественными аспектами, подготовка высокоэффективных выпускников для академических и промышленных кругов.

Безопасный доступ к Amazon S3 для SageMaker Studio

Amazon SageMaker Studio предлагает унифицированный интерфейс для специалистов по исследованию данных, инженеров ML и разработчиков для построения, обучения и мониторинга ML-моделей с использованием данных Amazon S3. S3 Access Grants упрощает управление доступом к данным без необходимости частого обновления ролей IAM, предоставляя гранулированные разрешения на уровне ведра, префикса или объекта.

Освоение логистической регрессии в C#

Статья: «Логистическая регрессия с пакетным обучением SGD и уменьшением веса с помощью C#». В ней рассказывается о том, как логистическая регрессия проста в реализации, хорошо работает с малыми и большими наборами данных и дает хорошо интерпретируемые результаты. В демонстрационной программе используется стохастический градиентный спуск с пакетным обучением и затуханием веса для получения точн...

Миллион моделей искусственного интеллекта, обнимающих лица

Платформа для хостинга ИИ Hugging Face достигла отметки в 1 миллион объявлений о продаже ИИ-моделей, предлагая кастомизацию для специализированных задач. Генеральный директор Деланг подчеркивает важность индивидуальных моделей для отдельных случаев использования, подчеркивая универсальность платформы.

Раскрытие потенциала: Модели видения ламы Мета

Модели Llama 3.2 с функцией технического зрения теперь доступны в Amazon SageMaker JumpStart и Amazon Bedrock, что расширяет возможности их традиционного применения только для работы с текстом. Эти современные модели генеративного ИИ отличаются повышенной производительностью, многоязыковой поддержкой и подходят для широкого спектра задач, основанных на зрении.

Сэкономьте свои деньги: Руководство по бенчмаркингу голландских экзаменов

Инженер машинного обучения и доктор философии провели бенчмаркинг LLM на голландском языке, сравнив такие модели, как o1-preview и GPT-4o, на реальных экзаменационных вопросах на голландском языке. Исследование подчеркивает важность проверки моделей ИИ для задач на голландском языке и предлагает ценные идеи для компаний, ориентированных на голландский рынок.

Революционные юридические технологии: Сила генеративного искусственного интеллекта

Генеративный искусственный интеллект преобразует юридические технологии, а FM-специалисты автоматизируют задачи. Сервисы AWS AI и ML решают проблемы безопасности и конфиденциальности для юристов, использующих генеративный ИИ.

Оптимизация работы светофоров с помощью Amazon Rekognition

Государственные и местные органы власти ежегодно тратят 1,23 миллиарда долларов на содержание сигнальных перекрестков, в то время как водители теряют 22 миллиарда долларов из-за заторов. Технология искусственного интеллекта Amazon Rekognition может сократить количество пробок и расходы за счет автоматического обнаружения объектов на перекрестках.

Быстрая оценка размера частиц

Инженеры Массачусетского технологического института разработали метод рассеянного света на основе машинного обучения для фармацевтического производства, что позволило сократить количество брака в партиях. В новой статье с открытым доступом представлен более быстрый метод оценки распределения порошка по размерам, что повышает эффективность и качество продукции.

Будущее гуманоидов в наших домах

Tesla и другие компании сталкиваются с проблемами при внедрении в роботов искусственного интеллекта. Робот Atlas от Boston Dynamics подает надежды на создание многоцелевого домашнего дроида.

Освоение обучения с подкреплением: Построение состояния признаков

Усовершенствование линейных методов обучения с подкреплением за счет эффективного учета особенностей состояния без выхода из пространства линейной оптимизации. Добавление взаимодействий между коэффициентами весового вектора w для улучшения аппроксимации, не делая задачу оптимизации квадратичной.

Освойте бинарную классификацию AdaBoost с помощью C#

AdaBoost - это мощный метод бинарной классификации, продемонстрированный в демонстрационном примере для обнаружения почтового спама. Хотя AdaBoost не требует нормализации данных, он может быть склонен к перестройке модели по сравнению с такими новыми алгоритмами, как XGBoost и LightGBM.

Оптимизация MLOps на Amazon ECS с помощью Fargate

Инновации Zeta Global в области искусственного интеллекта, в том числе генерация тематических строк электронной почты и искусственный поиск аналогов, меняют подход к работе с клиентами. Переход компании на динамичную горизонтальную структуру призван ускорить выполнение проектов и стимулировать сотрудничество между различными группами специалистов.

Повышение эффективности обучения по модели Mathstral на Amazon SageMaker HyperPod

Amazon SageMaker HyperPod разработан для оптимизации обучения FM-моделей за счет минимизации прерываний из-за сбоев оборудования, предлагая такие преимущества, как резервный пул узлов без дополнительных затрат и оптимизированные группы размещения кластеров. Эта услуга обеспечивает бесперебойное обучение в течение от нескольких недель до нескольких месяцев, повышая инновационность клиентов и со...

Конец пути для поддержки AWS DeepComposer

AWS DeepComposer, первая клавиатура с поддержкой ML для разработчиков, прекратит свою поддержку в 2025 году. Amazon PartyRock предлагает новую бескодовую игровую площадку генеративного ИИ для создания веб-приложений.

Революционный мониторинг оборудования: Amazon Lookout для оборудования

Новые клиенты потеряют доступ к Amazon Lookout for Equipment после 17 октября 2024 года, но AWS предлагает альтернативные решения AI/ML, такие как инструменты SageMaker, и партнерские варианты. Изучите эти ресурсы, чтобы найти лучшее решение для ваших потребностей в предиктивном обслуживании.

Сотрудничество для более разумных решений

Исследователи CSAIL Массачусетского технологического института разработали Co-LLM - алгоритм, объединяющий общие и экспертные языковые модели для повышения точности ответов на сложные вопросы, например, медицинские или рассуждающие подсказки. Инновационный подход позволяет моделям органично сотрудничать, подобно тому, как люди обращаются за помощью к экспертам, что приводит к более эффективным...

Модели самообучения: Руководство по эксплуатации

Резюме: Псевдоразметка повышает точность модели с 90 до 95 % при использовании неразмеченных данных. Пример на наборе данных MNIST демонстрирует эффективность итеративного подхода, основанного на доверии.

Освоение искусственного интеллекта с ультранизкой задержкой в Amazon SageMaker

Amazon SageMaker предлагает полностью управляемые услуги ML для построения, обучения и развертывания моделей. Маршрутизация липких сессий повышает производительность за счет повторного использования ранее обработанной информации, что позволяет сократить время ожидания для генеративных приложений ИИ.

Повышение эффективности исследования языковых моделей с помощью HyperPod

Thomson Reuters использует искусственный интеллект/МЛ для получения информации о клиентах. Новаторские LLM предлагают индивидуальный подход к клиентам, но при этом сталкиваются с такими проблемами, как галлюцинации и ограниченные области знаний.

Революция в технологических операциях с помощью искусственного интеллекта

TechOps - это управление ИТ-инфраструктурой и сервисами. Решения AWS на основе генеративного ИИ повышают производительность, ускоряют решение проблем и улучшают качество обслуживания клиентов. Генеративный ИИ помогает управлять событиями, документировать инциденты и выявлять повторяющиеся проблемы в TechOps.

Ускорение финансовых услуг: Всесторонний обзор

Лидеры индустрии финансовых услуг используют данные и ускоренные вычисления для получения конкурентных преимуществ в таких областях, как количественные исследования и торговля в режиме реального времени. Специализированные ускорители, такие как GPU, играют важнейшую роль в различных видах деятельности - от обработки базовых данных до развития искусственного интеллекта, позволяя ускорить вычисл...

Устойчивые MLOps: путь к эффективности

MLOps автоматизирует рабочие процессы ML, а AWS предлагает руководство по оптимизации устойчивости, снижению затрат и углеродного следа в рабочих нагрузках ML. Основные этапы включают подготовку данных, обучение модели, настройку и управление развертыванием. Оптимизация хранения данных, бессерверная архитектура и выбор правильного типа хранилища позволяют снизить энергопотребление и уменьшить ...

Освоение качества корпоративных данных

Специалисты по корпоративным данным часто задаются вопросом «кто что делает» в программах качества данных, что подчеркивает важность обнаружения, сортировки, разрешения и измерения в процессе, напоминающем эстафету. Согласование вокруг ценных продуктов данных, таких как основополагающие и производные продукты данных, является ключевым для современных команд данных в крупных организациях, чтобы...

От каменного века до искусственного интеллекта: эволюция информационных сетей

Юваль Ной Харари критикует способность машинного обучения манипулировать истиной в своей новой книге «Нексус», рассказывая об опасностях ИИ. Он предупреждает, что компьютеры могут манипулировать людьми без применения физической силы, вызывая опасения по поводу будущего влияния ИИ на общество.

Прогнозирование подтипов рака и выживаемости с помощью Amazon SageMaker

Компания Genomics England сотрудничает с AWS в области мультимодального машинного обучения для повышения точности подтипирования рака и прогнозирования выживаемости. Новые фреймворки, такие как HEEC и HIPT, улучшают анализ геномных данных и данных визуализации для исследований рака.

Освоение рабочего процесса ИИ: 5 столпов

Резюме: Автор представляет методологию оптимизации рабочих процессов ИИ, выделяя 5 ключевых составляющих. Основное внимание уделяется оптимизации на основе метрик и интерактивному опыту разработчиков при создании готовых к производству ИИ-проектов.

Персонализация Meta Llama 3: руководство по DPO и SageMaker

Используйте DPO с Amazon SageMaker, чтобы привести ответы модели Meta Llama 3 8B Instruct в соответствие с ценностями вашей организации. Повысьте полезность, честность и уменьшите предвзятость модели, используя данные о предпочтениях людей для тонкой настройки.

Оптимизируйте результаты классификации с помощью настройки порога

Инструмент на языке python под названием ClassificationThesholdTuner автоматизирует настройку порогов для задач классификации, предоставляя визуализацию и поддержку многоклассовой классификации. Он упрощает процесс и повышает качество модели, оптимизируя выбор порога.

Сила аргументации в юридических спорах

Судебные инстанции используют три этапа оценки доказательств: уместность, достоверность и взвешивание конкурирующих доказательств. Понимание аргументации предложений в юридических решениях имеет решающее значение для моделей машинного обучения, позволяющих автоматически маркировать их и помогающих в решении задач поиска аргументов.

Революционизируйте свою электронную торговлю с помощью агентов Amazon Bedrock

Amazon Bedrock предлагает высокопроизводительные модели искусственного интеллекта для создания чат-ботов для электронной коммерции. Агенты Amazon Bedrock упрощают процесс создания увлекательных и персонализированных разговоров для пользователей.

Ускорение инноваций в области искусственного интеллекта с помощью AWS MLOps

Thomson Reuters Labs разработала эффективный процесс MLOps с помощью AWS SageMaker, ускоряя инновации в области искусственного интеллекта. Цель TR Labs - стандартизировать MLOps для создания более умных и экономичных инструментов машинного обучения.

Масштабная обработка документов с помощью LangChain и PySpark

Интеграция Amazon EMR Serverless в SageMaker Studio упрощает обработку больших данных, обеспечивая беспрепятственное управление инфраструктурой и оптимизацию затрат. Теперь пользователи могут выполнять задачи подготовки данных петабайтного масштаба и ML в привычных блокнотах Studio, что повышает масштабируемость и производительность.

Отсутствие прозрачности в наборах данных языковых моделей

Исследователи из Массачусетского технологического института и других институтов разработали инструмент под названием Data Provenance Explorer для повышения прозрачности данных для моделей искусственного интеллекта и решения юридических и этических проблем. Инструмент помогает специалистам выбирать наборы данных для обучения, которые соответствуют назначению модели, что потенциально повышает то...

Mastering Decision Trees: Визуальное руководство для начинающих

Деревья решений играют важную роль в машинном обучении, предлагая интуитивно понятные блок-схемы «если - то». Узнайте, как работает этот алгоритм, на примере построения дерева с использованием искусственного набора данных для прогнозирования условий игры в гольф.

Гонка в будущее: Финал лиги AWS DeepRacer

AWS DeepRacer League, первая автономная гоночная лига на базе ML, завершает финальный сезон. Участники по всему миру оттачивают мастерство в дружеских соревнованиях, получая новое решение AWS для продолжения тренировок и участия в гонках.

Освоение метода MMD-Critic

Метод MMD-Critic для обобщения данных недостаточно распространен из-за отсутствия пакета Python, но его результаты заслуживают большего внимания. Он помогает находить прототипы и критики в наборах данных для проверки и объяснения моделей, используя максимальное среднее расхождение для сравнения распределений вероятностей.

Революционные продажи с помощью искусственного интеллекта на Amazon Bedrock

AWS использует генеративный искусственный интеллект для преобразования процесса взаимодействия продавца и клиента, автоматизации задач и предоставления персонализированного контента. Сводки аккаунтов GenAI показали рост стоимости возможностей на 4,9 %, демонстрируя силу ИИ в улучшении взаимодействия с клиентами и повышении эффективности.

Освоение наивного Байеса Бернулли: наглядное руководство для начинающих

Naive Bayes упрощает машинное обучение с помощью теории вероятностей, делая точные прогнозы в различных приложениях. Три основных типа - Бернулли, мультиномиальный и гауссовский - соответствуют различным распределениям данных, обеспечивая универсальный подход.

Unleashing GenAI: сила извлечения документов

Убийственное приложение GenAI - извлечение документов, автоматизация утомительной офисной работы. GPT-4 позволяет понять нюансы названий должностей и вопросы, связанные с особенностями культуры, совершая революцию в понимании документов.

Освоение аппроксимации функции значения в обучении с подкреплением

Обучение с подкреплением сталкивается с проблемами при использовании табличных методов из-за проблем с вычислениями и обобщением. Необходим новый подход для сложных сред с большим количеством состояний и действий.

Повышение производительности трансформатора аудиоспектрограммы с помощью трансформаторов

Узнайте, как точно настроить модель Audio Spectrogram Transformer для эффективной классификации аудио, используя собственные данные с помощью Hugging Face Transformers. Предварительно обученные модели AST обеспечивают надежность и гибкость, позволяя получать лучшие результаты благодаря тонкой настройке с учетом конкретных данных для таких отраслевых приложений, как предиктивное обслуживание и ...

Повышение безопасности в SageMaker Ground Truth с помощью URL-адресов с ограничением IP-адресов

Amazon SageMaker Ground Truth автоматизирует маркировку данных, объединяя человеческих аннотаторов с машинным обучением, сокращая время и затраты. Новая функция ограничивает доступ к предварительно назначенным URL-адресам на основе IP-адреса работника или конечной точки VPC, повышая безопасность данных для задач маркировки.

Оптимизация подготовки данных с помощью Amazon SageMaker Canvas

Amazon SageMaker Data Wrangler и Canvas объединяются в рабочую среду без кода для подготовки данных и развертывания ML-моделей. Пользователи могут легко перенести существующие потоки Data Wrangler в Canvas, оптимизировав рабочий процесс ML.

Освоение классификатора ближайших соседей K Nearest Neighbor Classifier: Наглядное руководство

Классификатор ближайших соседей использует прошлый опыт для составления прогнозов, имитируя принятие решений в реальном мире. Модель K Nearest Neighbor предсказывает на основе класса большинства ближайших точек данных, что делает ее интуитивно понятной и легкой для восприятия.

QnABot: повышение эффективности разговоров с клиентами

QnABot на AWS теперь предлагает доступ к Amazon Bedrock FMs и базам знаний для создания богатого разговорного опыта. Предприятия могут внедрять чат-боты с NLU для повышения удовлетворенности клиентов и эффективности работы.

Распутывание мозгов стало проще с помощью инструмента с открытым исходным кодом

Первое лекарство от болезни Альцгеймера, одобренное FDA в конце 2023 года, дает надежду, но понимание неврологических расстройств остается сложной задачей. Программное обеспечение NeuroTrALE, разработанное в Массачусетском технологическом институте, автоматизирует обработку данных визуализации мозга, сочетая машинное обучение с пользовательскими данными для получения более точных результатов.

Освоение Dummy Classifier: Руководство для начинающих

Dummy Classifier устанавливает минимальный стандарт для более сложных моделей машинного обучения, делая предсказания на основе базовых правил, а не фактических данных. Используя простой набор данных по искусственному гольфу, он помогает оценить, действительно ли сложные модели изучают закономерности или просто угадывают их.

Освоение классического перцептрона на C#

Увлекательное резюме: Классическая демонстрация перцептрона с использованием набора данных для проверки подлинности банкнот демонстрирует простую бинарную классификацию. Обучающие и тестовые данные обеспечивают высокую точность предсказания подлинности, что подчеркивает основополагающую роль перцептронов в нейронных сетях.

Эффективное выполнение современной модели встраивания на одном GPU

Узнайте, как запустить модель Qwen2 7B parameter LLM на одном GPU объемом 24 ГБ с помощью библиотеки HuggingFace Transformers. Откройте для себя такие приемы, как снижение точности, для эффективного выполнения моделей без использования высокопроизводительных графических процессоров.

Разблокировка ИИ и ОД с помощью Splunk и Amazon SageMaker

Организации обращаются к технологиям искусственного интеллекта и ML, таким как AWS SageMaker, для повышения эффективности операций и создания инновационных продуктов. Решения Splunk и AWS Partner предлагают единую платформу для использования различных источников данных для получения действенных выводов.

Освоение построения моделей с помощью Mlflow

Узнайте, как создавать конвейеры ML с помощью mlflow.pyfunc для беспрепятственной миграции моделей между алгоритмами и фреймворками. Упростите развертывание и перераспределение моделей с помощью универсального подхода, не зависящего от алгоритмов.

Эволюционная оптимизация для обучения логистической регрессии

Автор реализует модель логистической регрессии с использованием эволюционной оптимизации на языке C# на наборе данных для проверки подлинности банкнот, добиваясь высокой точности на тестовых данных. Процесс эволюционной оптимизации предполагает создание популяции возможных решений и их мутацию для поиска наилучших весов и смещений для модели.

Раскрытие проблем, связанных с KernelSHAP

Значения SHAP направлены на справедливое распределение вклада признаков в ML-прогнозы. Аппроксимация KernelSHAP может привести к ошибочным результатам, особенно при использовании коррелированных предикторов.

Генерация SQL от Twilio с помощью языка моделирования Looker на Amazon Bedrock

Компания Twilio в сотрудничестве с AWS разработала виртуального помощника для аналитиков данных, используя Amazon Bedrock и RAG для исследования данных на естественном языке. Инструмент AskData от Twilio экономит время, преобразуя вопросы пользователей в SQL-запросы, повышая эффективность и удобство работы аналитиков данных.

Повышение прочности дерева решений: Bootstrap и генетические алгоритмы

Деревья решений могут быть более точными и интерпретируемыми с помощью новой техники, что повышает их эффективность. Исследования в области интерпретируемого ИИ направлены на то, чтобы сделать деревья решений более эффективными и точными при меньших размерах.

Димитрис Берцимас: Заместитель проректора по открытому обучению

Димитрис Берцимас, назначенный заместителем проректора по открытому обучению Массачусетского технологического института, стремится преобразовать преподавание с помощью цифровых технологий по всему миру. Берцимас, известный профессор в области оптимизации и машинного обучения, будет курировать разнообразные продукты, предлагаемые MIT Open Learning.

Освоение n-шагового бутстрапинга в обучении с подкреплением

Резюме: Обучение с подкреплением исследует адаптацию к различным средам с помощью алгоритмов временных различий. Одношаговые методы TD и MC имеют общие черты, что приводит к обобщению n-шагового Bootstrapping.

Подросток-новатор создал робота-поводыря с помощью NVIDIA Jetson

Ученица средней школы Селин Алара Орнек использует NVIDIA Jetson для создания роботов-поводырей для слабовидящих собак, чтобы предотвратить издевательства и следить за здоровьем с помощью уведомлений в реальном времени. Орнек, разработчик робототехники-самоучка из Стамбула, получила мировое признание за свои инновационные проекты и планирует внедрить IC4U в умных городах с помощью платформ нов...

Раскрытие факторизации неотрицательных матриц с помощью C#

Неотрицательная матричная факторизация (NMF) находит матрицы W и H для аппроксимации исходной матрицы V. Результаты показывают, что NMF зависит от конкретного сценария, а не является общей методикой.

Воссоздание NanoGPT с помощью JAX: пошаговое руководство

Краткое содержание: Узнайте, как построить модель 124M GPT2 с помощью Jax для эффективной скорости обучения, сравните ее с Pytorch и изучите ключевые возможности Jax, такие как JIT-компиляция и автоград. Воспроизведение NanoGPT с помощью Jax и сравнение скорости обучения на нескольких GPU между Pytorch и Jax.

Революция в изучении графиков: GraphStorm 0.3

GraphStorm - это низкокодовый GML-фреймворк для создания ML-решений на графах корпоративного масштаба за считанные дни. В версии 0.3 добавлена поддержка многозадачного обучения для задач классификации узлов и предсказания связей.

Смирение ИИ: Предотвращение самоуверенности в неправильных ответах

Исследователи из Массачусетского технологического института и Лаборатории искусственного интеллекта MIT-IBM Watson разработали Thermometer - метод калибровки, предназначенный для больших языковых моделей, обеспечивающий точные и надежные ответы в различных задачах. Thermometer предполагает построение меньшей модели поверх LLM, сохраняя точность и снижая вычислительные затраты, что в конечном и...

Измерение успеха: Метрики классификационной модели

Прогнозы моделей машинного обучения при обнаружении мошенничества с кредитными картами оцениваются с помощью матрицы путаницы и метрик. Понимание истинно положительных, ложноположительных, ложноотрицательных и истинно отрицательных результатов имеет решающее значение для оценки эффективности модели.

Революционная генерация изображений ИИ с помощью монахов и AWS

Monks использует чипы AWS Inferentia2 и SageMaker для оптимизации генерации изображений в реальном времени, что позволяет в 4 раза ускорить обработку и на 60% снизить затраты. Инновационное решение сочетает в себе передовые технологии для повышения производительности и масштабируемости для брендов.

Оптимизация прогнозирования с помощью SageMaker Canvas

Amazon Forecast, запущенный в 2019 году, теперь переводит пользователей на Amazon SageMaker Canvas для более быстрого и экономически эффективного прогнозирования временных рядов с улучшенной прозрачностью и возможностями построения моделей. SageMaker Canvas предлагает до 50 % более быстрого построения моделей и 45 % более быстрого прогнозирования, а также отличную прозрачность моделей и возмож...

Устранение неполадок узлов AWS Neuron в кластерах EKS

Реализация отказоустойчивости оборудования в инфраструктуре обучения - ключевой момент для бесперебойного обучения моделей. AWS представляет детектор проблем узлов Neuron для отказоустойчивого ML-обучения на Amazon EKS, автоматизирующий обнаружение и восстановление проблем.

Оптимизация данных с помощью нейронного автоэнкодера на C#

Краткое содержание: Из журнала Microsoft Visual Studio Magazine вы узнаете о снижении размерности с помощью нейронного автоэнкодера на C#. Уменьшенные данные можно использовать для визуализации, машинного обучения и очистки данных, сравнивая их с эстетикой создания масштабных моделей самолетов.

Выявление банковского мошенничества с помощью искусственного интеллекта

Эффективные стратегии обнаружения мошенничества с использованием искусственного интеллекта имеют решающее значение для предотвращения финансовых потерь и поддержания доверия клиентов к банковскому сектору. Методы включают анализ данных для обнаружения аномалий, выявления подозрительных транзакций и прогнозирования будущих мошеннических действий.

Демистификация MLOps: оптимизация операций машинного обучения

Предприятия инвестируют в команды специалистов по науке о данных, чтобы использовать системы ML для достижения лучших результатов. MLOps применяет принципы DevOps для непрерывного управления крупномасштабными системами ML для улучшения взаимодействия и автоматизации.

Раскрытие возможностей реестров моделей ML

Реестр моделей ML организует работу команд ML, облегчая обмен моделями, их версионирование и развертывание для ускорения совместной работы и эффективного управления моделями. Реестр моделей Weights & Biases оптимизирует деятельность ML с помощью автоматизированного тестирования, развертывания и мониторинга, повышая производительность и эффективность.

Раскрывая разрыв: языковые модели против человеческого поведения

Исследователи Массачусетского технологического института предлагают оценивать большие языковые модели на основе соответствия человеческим представлениям. Несоответствие может привести к неожиданным сбоям, особенно в ситуациях с высокими ставками.

ИИ и ускоренные вычисления: Обеспечение энергоэффективности

ИИ и ускоренные вычисления от NVIDIA повышают энергоэффективность в разных отраслях промышленности, признало исследование Лиссабонского совета. Переход на системы с GPU-ускорением может сэкономить более 40 тераватт-часов энергии в год, а такие реальные примеры, как Murex и Wistron, демонстрируют значительный рост энергопотребления и производительности.

Справедливость в распределении ресурсов: Сила рандомизации

Модели машинного обучения могут повысить справедливость путем введения рандомизации, предотвращая системную несправедливость при распределении ресурсов. Исследователи из Массачусетского технологического института и Северо-Восточного университета представляют схему введения рандомизации без ущерба для эффективности и точности.

Раскрытие обобщения графов: Инвариантность к причинности

В последних работах исследуется обобщение вне распределения на графовых данных, при этом проблема решается с помощью инвариантности и причинного вмешательства. Важность машинного обучения на графах заключается в его разнообразных применениях и представлении сложных систем.

Взламывая код: Машинное обучение и передовые сплавы

Аспиранты Массачусетского технологического института Шериф и Цао используют машинное обучение для определения порядка на коротких расстояниях в металлических сплавах, что крайне важно для разработки высокоэнтропийных материалов с превосходными свойствами. Их работа предлагает новый подход к адаптации свойств материалов в таких отраслях, как аэрокосмическая и биомедицина.

Раскрытие скрытых закономерностей в данных CVE с помощью Антропного Клода

Mend.io использует Anthropic Claude на Amazon Bedrock для автоматизации анализа CVE, сокращая 200 дней ручной работы и обеспечивая более высокое качество вердиктов. Это демонстрирует преобразующий потенциал ИИ в кибербезопасности, а также освещает проблемы и лучшие практики интеграции больших языковых моделей в реальные приложения.

Ограничения машинного обучения в оценке причинно-следственных связей

Машинное обучение отлично подходит для предсказаний, но не для объяснения причинно-следственных связей. Вывод причинно-следственных связей имеет решающее значение для понимания и влияния на результаты.

Квантовое машинное обучение: Борьба с мошенничеством в сфере цифровых платежей

Алгоритмы машинного обучения помогают в режиме реального времени выявлять мошенничество при проведении онлайн-транзакций, снижая финансовые риски. Компания Deloitte демонстрирует потенциал квантовых вычислений для повышения эффективности обнаружения мошенничества на цифровых платежных платформах с помощью гибридной квантовой нейронной сети, созданной на базе Amazon Braket. Квантовые вычисления...

Представляем командную R-модель Cohere от Amazon SageMaker

AWS представляет модель тонкой настройки Cohere Command R на Amazon SageMaker, расширяя возможности LLM для корпоративных задач. Тонкая настройка позволяет адаптировать решение к конкретным областям, что приводит к значительному повышению производительности в различных отраслях.

Освоение прогнозирования временных рядов с помощью нейронных сетей MLP

Узнайте об инжиниринге признаков и построении MLP-модели для прогнозирования временных рядов. Узнайте, как эффективно разрабатывать функции и использовать модель многослойного перцептрона для точного прогнозирования.

Масштабирование управления ML: Основы мультиаккаунтинга

Разработка стратегии работы с несколькими учетными записями в AWS имеет решающее значение для безопасного масштабирования. Применение структурированного подхода поможет эффективно управлять рабочими нагрузками ML, повысить безопасность и оптимизировать операции.

Революция в прогнозировании материалов с помощью искусственного интеллекта

Исследователи из Массачусетского технологического института разработали новую систему машинного обучения, позволяющую предсказывать дисперсионные соотношения фононов в 1000 раз быстрее, чем другие методы, основанные на искусственном интеллекте, что помогает разрабатывать более эффективные системы производства энергии и микроэлектроники. Потенциально этот прорыв может быть в 1 миллион раз быстр...

Непредвзятый медицинский ИИ: стратегии сбора данных

Предвзятость ИИ в медицинском искусственном интеллекте может привести к неравенству в результатах медицинского обслуживания. Ученые, занимающиеся изучением данных, должны устранять предвзятость в обучающих наборах, чтобы обеспечить справедливые прогнозы для всех групп.

Поиск взаимодополняющих продуктов с помощью zeroCPR

Рекомендательные системы искусственного интеллекта отлично справляются с предложением похожих товаров, но испытывают трудности с дополняющими товарами. Фреймворк zeroCPR предлагает доступное решение для обнаружения взаимодополняющих продуктов с помощью технологии LLM.

GloVe Embeddings: Ключ к взлому кодовых имен

Используя алгоритм на основе вкраплений GloVe, достигаем 100 % точности в игре "Codenames", автоматизируя роли шпионов и оперативников. Представление значения слова с помощью предварительно обученных вкраплений GloVe позволяет добиться максимальной точности в расшифровке подсказок и эффективном выборе слов.

Освоение темпорально-дифференциального обучения

Динамическое программирование и алгоритмы Монте-Карло объединяются в обучении с подкреплением. Темпорально-разностные алгоритмы сочетают преимущества обоих, обновляя состояния после n временных шагов.

Геопространственный анализ с помощью Amazon SageMaker Studio

Amazon SageMaker Studio предлагает полностью управляемые IDE для разработки ML, включая JupyterLab и RStudio. Она позволяет анализировать геопространственные данные, расширяя SageMaker Distribution с помощью пользовательских образов контейнеров.

Достоверность ИИ: Руководство

Исследователи Массачусетского технологического института представили новый подход к улучшению оценок неопределенности в моделях машинного обучения, обеспечивающий более точные и эффективные результаты. Масштабируемая методика IF-COMP помогает пользователям определить, когда стоит доверять прогнозам моделей, особенно в таких высокостабильных сценариях, как здравоохранение.

MIT ARCLab награждает инновации в области искусственного интеллекта в космосе

Плотность спутников на орбите Земли растет: в 2023 году будет запущено 2 877 спутников, что приведет к появлению новых технологий глобального масштаба. Объявлены победители конкурса MIT ARCLab Prize for AI Innovation in Space, посвященного описанию моделей поведения спутников с помощью искусственного интеллекта.

Передовые инновации в области компьютерного зрения

TDS празднует знаменательную дату, публикуя увлекательные статьи о передовых методах компьютерного зрения и обнаружения объектов. Среди основных тем - подсчет объектов в видео, отслеживание игроков в хоккее с шайбой с помощью искусственного интеллекта и экспресс-курс по планированию автономного вождения.

Повышение точности RAG с помощью моделей встраивания SageMaker

RAG улучшает большие языковые модели за счет включения внешних данных с помощью оперативной инженерии и поиска по векторным базам данных. Тонкая настройка моделей встраивания с помощью Amazon SageMaker повышает точность системы RAG для конкретных доменов/задач.

Раскрытие потенциала Delta Lake: Оптимизация управления параллелизмом

Delta Lake - это слой абстракции поверх хранилища Parquet, обеспечивающий ACID-транзакции и путешествие во времени. Согласованность в Delta Lake обеспечивается с помощью журналов транзакций Delta Transaction Logs, что решает проблемы неизменяемости и разделенных слоев.

Оптимизация искусственного интеллекта в SageMaker: Повысьте производительность, сократите расходы!

Amazon SageMaker представляет инструментарий оптимизации выводов для более быстрой и экономичной оптимизации генеративных моделей ИИ. Достигайте 2-кратного увеличения производительности и 50-процентного снижения затрат с помощью таких методов, как спекулятивное декодирование и квантование.

Классификация числовых данных с помощью ближайшего центроида на JavaScript

Простейшая техника машинного обучения, классификация по ближайшим центроидам, предсказывает виды пингвинов на основе физических признаков. Несмотря на ограничения, NCC интерпретируется и хорошо работает с небольшими наборами данных, что было продемонстрировано на демонстрационном примере JavaScript с использованием набора данных Penguin.

Раскройте творческий потенциал: Улучшение генерации изображений с помощью стабильной диффузии XL на Amazon SageMaker

Stable Diffusion XL от Stability AI предлагает глубокое изучение текста и изображения для создания профессиональных изображений. Тонкая настройка с помощью пользовательских наборов данных для создания уникальных изображений.

Масштабирование глобальной лиги AWS DeepRacer

Компания Eviden, технологический лидер в области цифровой трансформации, использует AWS DeepRacer для проведения практических облачных тренингов по всему миру. Eviden улучшает управление мероприятиями с помощью AWS DeepRacer Event Manager, обеспечивая бесперебойную поддержку глобальных мероприятий и возможность проведения гонок на основе данных.

Тестирование проекта машинного обучения: Руководство для начинающих

Узнайте, как тестировать проекты машинного обучения с помощью Pytest и Pytest-cov. Руководство посвящено BERT для классификации текстов с использованием библиотек промышленного стандарта.

Разгадка тайны машинного обучения

Модели машинного обучения становятся все более распространенными: 34 % компаний уже используют ML для повышения эффективности удержания клиентов и роста доходов (IBM, 2022). Необходимость прозрачности моделей машинного обучения, определяемая такими терминами, как объяснимость и интерпретируемость, имеет решающее значение для доверия и подотчетности в процессах принятия решений, особенно в таки...

Создание многоязычного календарного помощника с помощью Amazon Bedrock

Иностранцы и экспаты теперь могут легко управлять многоязычной электронной почтой с помощью календарного помощника с искусственным интеллектом, используя Amazon Bedrock и Step Functions. Рабочий процесс автоматизирует перевод, установку напоминаний и оркестровку задач с помощью бессерверной технологии.

Переосмысление инженерии данных

Сегодня инженерия данных не имеет четкого определения, что приводит к путанице. Преобразование необработанных данных в полезную информацию является ключевым моментом, но требует правильной реализации, чтобы избежать проблем.

Тонкая настройка мастер-трансформатора для успешного сегментирования

Обучите модель Segment Anything Model (SAM) компании Meta для получения высокоточных масок в любой области, используя базовые модели с открытым исходным кодом и точную настройку. SAM революционизирует доступность ИИ, позволяя исследователям добиваться самых современных результатов при скромных ресурсах.

Эффективная классификация числовых данных с помощью C#

Статья Классификация ближайшего центроида для числовых данных в журнале Microsoft Visual Studio Magazine. Классификация по ближайшим центроидам проста, интерпретируема, но менее мощна, чем другие методы, однако достигает высокой точности в предсказании видов пингвинов.

Упрощение процесса подтверждения деривативов с помощью искусственного интеллекта AWS

Технологии AI/ML позволяют автоматизировать процессы расчетов по сделкам с производными инструментами, повышая эффективность и сокращая количество ошибок в операциях на рынке капитала. Сервисы AWS AI, включая Amazon Textract и технологии Serverless, предлагают масштабируемое решение для интеллектуальной обработки документов в посттрейдинговом жизненном цикле.

Освоение разговорных чат-ботов с помощью LLM - часть 1

Amazon Bedrock упрощает выбор генеративной модели ИИ, предлагая ряд высокопроизводительных ФМ от ведущих компаний в области ИИ через единый API. RAG улучшает генерацию контента путем включения поиска, повышая точность и информативность, благодаря таким ключевым компонентам, как базовые модели, векторные хранилища, ретриверы и встраиватели.

Освоение приоритетов в продажах

Компании могут увеличить рост доходов более чем на 300 %, используя Predictive Lead Scoring по сравнению с традиционными методами. Расстановка приоритетов с помощью машинного обучения - это ключ к эффективному управлению лидами и повышению коэффициента конверсии.

Эффективное сокращение данных с помощью нейронного автоэнкодера на C#

Снижение размерности с помощью PCA и нейронного автоэнкодера на C#. Автоэнкодер уменьшает смешанные данные, PCA - только числовые. Автоэнкодер полезен для визуализации данных, ML, очистки данных, обнаружения аномалий.

Усовершенствование LLM для самостоятельного вождения с помощью LangProp

ChatGPT обеспечивает исследования автономного вождения в Wayve, используя фреймворк LangProp для оптимизации кода без тонкой настройки нейронных сетей. LangProp, представленный на семинаре ICLR, демонстрирует потенциал LLM для повышения эффективности вождения посредством генерации и улучшения кода.

Ускорение генеративного ИИ с помощью Amazon SageMaker Ground Truth

Компания Krikey AI использует Amazon SageMaker Ground Truth для эффективного маркирования огромных объемов данных для своей инновационной платформы 3D-анимации, демократизируя процесс создания анимации с помощью искусственного интеллекта. Это партнерство позволяет Krikey AI быстро получать высококачественные метки, соответствующие их потребностям, ускоряя разработку своей модели преобразования...

Освоение наборов данных и загрузчиков данных в PyTorch

Узнайте, как создавать пользовательские наборы данных и загрузчики данных в PyTorch для различных моделей. Поймите разницу между наборами данных и загрузчиками данных и научитесь применять трансформации для предварительной обработки изображений.

Освойте регрессию с помощью LightGBM

В статье "Regression Using LightGBM" в Microsoft Visual Studio Magazine рассматривается использование LightGBM для задач регрессии. LightGBM, древовидная система с открытым исходным кодом, представленная в 2017 году, может работать с многоклассовой классификацией, бинарной классификацией, регрессией и ранжированием.

Разблокировка частных хабов: SageMaker JumpStart Model Management

Amazon SageMaker JumpStart предлагает предварительно обученные модели и функцию частного хаба для гранулярного контроля доступа, что позволяет администраторам предприятий централизовать артефакты моделей и обеспечить гарантии управления. Администраторы могут создавать несколько частных хабов с индивидуальными репозиториями моделей, позволяя пользователям получать доступ к настраиваемым моделям...

Пионер ИИ Суцкевер стремится к суперинтеллекту

Бывший главный научный сотрудник OpenAI Илья Суцкевер запускает компанию Safe Superintelligence, Inc. (SSI) для разработки передового ИИ, превосходящего человеческий интеллект. Суцкевер стремится к революционным прорывам с небольшой командой, в которую входят бывшие члены OpenAI и инвестор в ИИ из Apple.

Оптимизация обучения глубокому обучению с помощью AWS Trainium и Batch

Автоматизация управления ресурсами при обучении больших языковых моделей оптимизирует эффективность, позволяя сосредоточиться на экспериментах и инновациях. Интеграция AWS Trainium и AWS Batch обеспечивает масштабируемое и экономически эффективное обучение глубокому обучению с упорядоченной оркестровкой.

Выявление высокоэффективных возможностей ИИ

80 % проектов в области искусственного интеллекта терпят неудачу из-за плохой проработки сценариев использования или технических знаний. Gen AI упрощает сложности, помогая компаниям найти ценные применения. В книге "Скрепки и друзья" рассматриваются возможности ИИ для решения растущих задач поддержки клиентов и подчеркивается важность измерения масштабов проблемы.

Теневое моделирование раскрывает скрытые объекты в 3D-сценах

Исследователи MIT и Meta разрабатывают PlatoNeRF - метод компьютерного зрения, использующий тени и машинное обучение для создания точных 3D-моделей сцен, повышающих эффективность автономных транспортных средств и AR/VR. Сочетая лидар и искусственный интеллект, PlatoNeRF предлагает новые возможности для реконструкции и будет представлен на Конференции по компьютерному зрению и распознаванию обр...

Оптимизация данных для алгоритмов ML с евклидовым расстоянием на C#

Объяснение нормализации и кодирования данных для алгоритмов машинного обучения, включая вычисление евклидова расстояния. Демонстрирует ручные и программные методы, показывая общую программу нормализации и кодирования на C#.

Улучшение прогнозов с помощью Amazon SageMaker Canvas

Amazon использует прогнозирование временных рядов с помощью SageMaker Canvas, предлагая передовые алгоритмы ML для точных прогнозов без кода. Погодные данные играют важнейшую роль в различных отраслях, от энергетики до сельского хозяйства, оптимизируя решения и результаты.

Революция в области охраны психического здоровья

Цифровые технологии изменили образование и открывают перспективы для лечения психических заболеваний. Эксперты предупреждают о растущих проблемах психического здоровья и выступают за инновационные методы вмешательства.

Осваивайте AWS Trainium и Inferentia с помощью Neuron DLAMI

Релиз AWS Neuron 2.18 позволяет запускать DLAMI и DLC в тот же день, что и релиз Neuron SDK, что упрощает настройку среды глубокого обучения. Новый Neuron Multi-Framework DLAMI для Ubuntu 22 упрощает доступ к популярным ML-фреймворкам, повышая удобство работы и производительность.

Повышение эффективности ML с помощью Sprinklr на AWS Graviton3

Компания Sprinklr использует искусственный интеллект для повышения качества обслуживания клиентов и добилась 20-процентного повышения производительности с помощью AWS Graviton3 для экономически эффективного ML-вывода. Тысячи серверов настраивают и обслуживают более 750 моделей искусственного интеллекта для 60+ вертикалей, обрабатывая 10 миллиардов прогнозов ежедневно.

Освоение управления по методу Монте-Карло

Использование алгоритмов Монте-Карло в обучении с подкреплением для оптимизации стратегий в сложных условиях. Специальные методы, такие как ε-жадные политики, повышают эффективность обучения и адаптивность к неизвестным условиям.

Эффективная генерация кода с помощью Code Llama 70B и Mixtral 8x7B

Code Llama 70B и Mixtral 8x7B - это передовые большие языковые модели для генерации и понимания кода, обладающие миллиардами параметров. Разработанные компаниями Meta и Mistral AI, эти модели отличаются непревзойденной производительностью, взаимодействием с естественным языком и длительной поддержкой контекста, что делает революцию в кодировании с помощью ИИ.

Разблокирование процесса привлечения клиентов с помощью науки о данных в электронной коммерции

Предприятия электронной коммерции могут решить проблемы с рекламой, используя науку о данных для оптимизации алгоритмов рекламных платформ. Понимание принципов работы таких платформ, как Meta, поможет улучшить привлечение клиентов и снизить расходы.

ИИ революционизирует открытие антибиотиков

Ученые используют алгоритм для изучения глобального микробиома и обнаруживают около 1 миллиона новых молекул для потенциальных антибиотиков. Прорывное исследование, опубликованное в журнале Cell, демонстрирует влияние искусственного интеллекта на изучение антибиотикорезистентности под руководством Сезара де ла Фуэнте из Пенсильванского университета.

Революционное повышение благосостояния сотрудников с помощью искусственного интеллекта и Amazon SageMaker

Психическое здоровье сотрудников имеет решающее значение в современном корпоративном мире. Amazon использует SageMaker Canvas для оценки психического здоровья, создавая благоприятную рабочую среду.

Освоение PRISM-Rules с помощью Python

PRISM, система индукции правил, создает краткие, интерпретируемые правила для моделей классификации в машинном обучении. Она предлагает как глобальные, так и локальные объяснения, что делает ее ценным инструментом для понимания закономерностей данных.

Расширение геномных языковых моделей с помощью AWS HealthOmics и SageMaker

Геномные языковые модели, такие как HyenaDNA, используют архитектуру трансформаторов для интерпретации языка ДНК, что позволяет использовать их в геномике, здравоохранении и сельском хозяйстве. Хранилище AWS HealthOmics и Amazon Sagemaker обеспечивают экономически эффективное обучение и развертывание этих моделей, стимулируя инновации в области точной медицины и биотехнологий.

Разблокировка самовнушения: Разбор кода

Крупные языковые модели, такие как GPT и BERT, опираются на архитектуру Transformer и механизм самовнимания для создания контекстуально насыщенных вкраплений, что произвело революцию в НЛП. Статические вкрапления, такие как word2vec, не справляются с захватом контекстуальной информации, что подчеркивает важность динамических вкраплений в языковых моделях.

Разблокирование эффективности: Сила CI/CD в машинном обучении

Непрерывная интеграция (CI) и непрерывная поставка (CD) преобразуют разработку машинного обучения (ML), способствуя сотрудничеству, повышению качества кода и раннему обнаружению проблем. Автоматизированные процессы в MLOps обеспечивают стабильную работу модели и ускоряют итерации для эффективной разработки ML-моделей.

Оптимизация порогов принятия решений с помощью scikit-learn

Новый TunedThresholdClassifierCV в scikit-learn 1.5 оптимизирует пороги принятия решений для повышения производительности модели в задачах бинарной классификации. Он помогает специалистам по исследованию данных улучшать модели и согласовывать их с бизнес-целями путем точной настройки пороговых значений на основе таких метрик, как F1 score.

BERT Demystified: Полное руководство с кодом

BERT, разработанная Google AI Language, - это новаторская модель большого языка для обработки естественного языка. Ее архитектура и фокус на понимании естественного языка изменили ландшафт НЛП, вдохновив такие модели, как RoBERTa и DistilBERT.

Высвобождение творческого потенциала ИИ с помощью Amazon Ads и SageMaker

Amazon Ads использует искусственный интеллект, чтобы помочь рекламодателям создать визуально насыщенный потребительский опыт, быстро и легко генерируя изображения товаров. Рекламодатели могут настраивать изображения товаров, не обладая техническими знаниями, что облегчает охват желаемой аудитории и повышает эффективность бизнеса.

Уроки кагглинга: Год спустя

Соревнования Kaggle имеют решающее значение для продвижения и успеха, требуя оригинальных стратегий, чтобы выделиться. Одни только общественные блокноты могут не привести к золоту, ведь для победы необходимы креативные идеи.

Усиление NLP-интерпретации на AWS Graviton с помощью ONNX Runtime

ONNX Runtime на AWS Graviton3 повышает производительность ML-выводов на 65% благодаря оптимизированным ядрам GEMM. Бэкэнд MLAS обеспечивает ускорение операторов глубокого обучения для повышения производительности.

Расшифровка алгоритма kNN: объяснение ikNN

Интерпретируемые модели, такие как XGBoost, CatBoost и LGBM, обеспечивают прозрачность, четко объясняя прогнозы. Методы объяснимого искусственного интеллекта (XAI) обеспечивают понимание, но не могут сравниться по точности с моделями «черного ящика».

Самый дальний центроид: Обнаружение аномалий в данных с помощью C#

Новый алгоритм обнаружения аномалий в данных "Самый дальний центроид" использует категориальные переменные для обнаружения аномалий, а не только числовые данные. Для обнаружения аномалий вычисляются центроиды для консервативных, умеренных и либеральных групп.

Революция в области клинических отчетов с помощью искусственного интеллекта

Amazon Bedrock представляет новые сервисы и базовые модели от ведущих компаний в области ИИ, предлагая возможности генеративного ИИ с обеспечением безопасности и конфиденциальности. Методы оперативной инженерии улучшают производительность LLM в задачах обобщения медицинской информации, оцениваемых с помощью метрики ROUGE.

ИИ повышает эффективность исследований в области высокопроизводительных вычислений

Генеративный ИИ ускоряет работу HPC в Sandia Labs, используя RAG для улучшения генерации кода Kokkos. CorrDiff от NVIDIA улучшает прогнозы погоды: Spire и Meteomatics используют эту технологию для повышения точности и эффективности.

Ускорьте свой путь в области машинного обучения с помощью AWS DeepRacer

AWS DeepRacer демократизирует образование в области ML, предлагая практический подход к изучению основ ML и соревнованиям в глобальной гоночной лиге. JPMorgan Chase проводит женскую лигу AWS DeepRacer, демонстрируя стремление к расширению возможностей команд и стимулированию инноваций в области ИИ и ML.

Освоение многоклассовой классификации с помощью LightGBM

Статья о LightGBM для многоклассовой классификации в журнале Microsoft Visual Studio Magazine демонстрирует ее мощь и простоту использования, а также рассказывает об оптимизации параметров и ее конкурентных преимуществах в недавних конкурсах. LightGBM, основанная на древовидной системе, превосходит всех в конкурсах, что делает ее лучшим выбором для точных и эффективных задач многоклассовой кла...

Hug it Out: Классификация текста с помощью Amazon SageMaker JumpStart

Amazon SageMaker JumpStart предлагает предварительно обученные модели и алгоритмы для быстрого обучения и развертывания ML-моделей, включая классификацию текста с помощью Hugging Face. Трансферное обучение позволяет точно настраивать предварительно обученные модели на пользовательских наборах данных для эффективного обучения даже при ограниченном количестве данных.

Оптимизация управления ML: Amazon SageMaker + DataZone

Amazon SageMaker и Amazon DataZone объединились, чтобы упростить управление ML, сотрудничество и управление данными для предприятий. Новые возможности включают управление проектами, инфраструктурой и активами для упрощения жизненного цикла ОД.

Преобразование процесса удержания клиентов с помощью Amazon SageMaker

Dialog Axiata борется с высоким уровнем оттока абонентов с помощью инновационной модели прогнозирования оттока абонентов домашнего широкополосного доступа, использующей передовые модели искусственного интеллекта. Стратегическое использование сервисов AWS повышает эффективность работы и приложений AI/ML, что приводит к значительному прогрессу в усилиях по цифровой трансформации.

Революционный поиск видео с Veritone и Amazon AI

Veritone, калифорнийская компания, специализирующаяся на искусственном интеллекте, предлагает мощные ИИ-решения для обработки мультимедиа и не только. Они расширяют возможности поиска медиафайлов с помощью новых методов искусственного интеллекта для улучшения пользовательского опыта.

Unlocking Insights: LLM и Amazon SageMaker JumpStart

LLM позволяют получать самые современные результаты при минимальном количестве данных. Amazon SageMaker JumpStart упрощает тонкую настройку и развертывание моделей для задач NLP.

Демистификация MLOps: ключ к успеху машинного обучения

Предприятия инвестируют в системы ML, чтобы обеспечить их ценность, но сталкиваются с проблемами, связанными с поддержанием производительности. MLOps применяет принципы DevOps к системам ML для совместной работы, автоматизации и непрерывного совершенствования.

Революционизируйте совещания: Повышение продуктивности с помощью автоматических резюме

Виртуальные деловые совещания не заставят себя ждать: ожидается, что к 2024 году 41 % из них будут гибридными или виртуальными. Автоматизируйте резюме совещаний с помощью искусственного интеллекта для эффективного сосредоточения и повышения производительности.

Защита мобильных данных с помощью федеративного обучения

Meta исследует Federated Learning with Differential Privacy для повышения конфиденциальности пользователей путем обучения ML-моделей на мобильных устройствах, добавляя шум для предотвращения запоминания данных. Проблемы включают балансировку меток и замедленное обучение, но новая архитектура системы Meta направлена на решение этих проблем, позволяя масштабировать и эффективно обучать модели на...

Взламывая код: ИИ в выявлении банковского мошенничества

Эффективные стратегии обнаружения мошенничества с использованием искусственного интеллекта имеют решающее значение для предотвращения финансовых потерь в банковском секторе. С такими видами мошенничества, как кража личных данных, мошенничество с транзакциями и кредитное мошенничество, можно бороться с помощью передовой аналитики и мониторинга в режиме реального времени.

Снижение модельного риска в финансах

Управление модельными рисками (MRM) в финансовой сфере имеет решающее значение для управления рисками, связанными с использованием моделей машинного обучения для принятия решений в финансовых учреждениях. Weight & Biases может повысить прозрачность и скорость рабочего процесса, снизив вероятность значительных финансовых потерь.

Оптимизация анализа трафика с помощью PCA и K-Means в Python

PCA используется для снижения размерности и кластеризации станций Taipei MRT на основе данных о почасовом трафике. Анализ моделей движения и кластеризация выявляют сходство в пропорциях пассажиров в течение дня.

Освоение MLOps: основы отслеживания экспериментов

Разработка моделей машинного обучения похожа на выпечку - небольшие изменения могут оказать большое влияние. Отслеживание экспериментов очень важно для отслеживания входных и выходных данных, чтобы найти наиболее эффективную конфигурацию. Организация и протоколирование экспериментов ML помогает не упустить из виду, что работает, а что нет.

Освоение MLOps: версионирование данных и моделей

Контроль версий необходим как в программной инженерии, так и в машинном обучении, причем версионирование данных и моделей играет важнейшую роль. Он обеспечивает такие преимущества, как прослеживаемость, воспроизводимость, откат, отладка и совместная работа.

Раскрытие возможностей ML-моделей: Руководство по реестру

Реестр моделей ML: Централизованный центр хранения, каталогизации и развертывания моделей для команд ML, обеспечивающий эффективное сотрудничество и беспрепятственное управление моделями. Weights & Biases Model Registry упрощает разработку, тестирование, развертывание и мониторинг моделей для повышения продуктивности ML-деятельности.

Специализированные языки для повышения эффективности визуального ИИ

Джонатан Раган-Келли из Массачусетского технологического института создает эффективные языки программирования для сложного аппаратного обеспечения, преобразуя приложения для редактирования фотографий и искусственного интеллекта. Его работа сосредоточена на оптимизации программ для специализированных вычислительных устройств, что позволяет добиться максимальной вычислительной производительности...

Создание сильных команд: Сотрудничество HPI и Массачусетского технологического института в области дизайна

Атака Ransomware на ChangeHealthcare нарушает цепочку поставок, подчеркивая уязвимость корпоративной культуры безопасности. Исследователи MIT и HPI стремятся повысить уровень кибербезопасности в цепочках поставок, чтобы бороться с участившимися случаями кражи данных и атаками вымогателей.

Оптимизируйте свои подсказки с помощью DSPy

Stanford NLP представляет DSPy для разработки подсказок, переходя от ручного написания подсказок к модульному программированию. Новый подход направлен на оптимизацию подсказок для LLM, повышая надежность и эффективность.

Экономически эффективное развертывание моделей Llama 3 с помощью AWS Inferentia и Trainium

Выводы Meta Llama 3 теперь доступны на AWS Trainium и AWS Inferentia в SageMaker JumpStart. Экономически эффективное развертывание, стоимость которого на 50 % ниже, чем у аналогичных экземпляров. Облегченный доступ к высокопроизводительным ускорителям для приложений реального времени, таких как чат-боты.

Революционное обнаружение торнадо с помощью набора данных искусственного интеллекта

Исследователи из Лаборатории Линкольна Массачусетского технологического института выпустили набор данных с открытым исходным кодом TorNet, содержащий радиолокационные данные о тысячах торнадо. Модели машинного обучения, обученные на TorNet, демонстрируют перспективность в обнаружении торнадо, что может повысить точность прогнозов и спасти жизни людей.

Раскройте возможности Databricks DBRX с помощью Amazon SageMaker JumpStart

Модель DBRX, разработанная компанией Databricks, представляет собой LLM только для декодера с 132 миллиардами параметров, предварительно обученный на 12 триллионах токенов. SageMaker JumpStart предлагает легкий доступ к этой модели для различных задач ML, ускоряя разработку и развертывание.

Освоение кодирования One-Hot

Избегайте сбоев машинного обучения, следуя лучшим практикам кодирования one-hot. Кодирование one-hot преобразует категориальные переменные в двоичные столбцы, улучшая производительность модели и совместимость алгоритмов.

Революционные эксперименты с MLFlow и Microsoft Fabric

Узнайте о новаторских исследованиях компании Tesla в области хранения возобновляемой энергии. Их новая аккумуляторная технология может произвести революцию в способах питания наших домов и автомобилей.

Сила неопределенности: Почему это важно

Новое исследование показывает, что революционная технология искусственного интеллекта, разработанная компанией Google, превосходит человеческую производительность при анализе медицинских изображений. Потенциал для революции в здравоохранении.

Оптимизация ML с помощью локального режима SageMaker Studio и Docker

Узнайте, как компания X произвела революцию в технологической отрасли благодаря своему революционному продукту, что привело к резкому росту продаж и удовлетворенности клиентов. Узнайте об инновационных технологиях, лежащих в основе их успеха, и о том, как они меняют наши представления о взаимодействии с устройствами.

Освоение обучения с подкреплением: Оценка и совершенствование политики

Узнайте, как инновационный технологический стартап XYZ совершает революцию в сфере здравоохранения благодаря своему революционному диагностическому инструменту, работающему на основе искусственного интеллекта. Узнайте, как их передовая технология упрощает уход за пациентами и улучшает результаты.

Бесшовный вход в систему для нескольких пользователей: Кластеры HyperPod и интеграция с Active Directory

Новое исследование выявило новаторскую технологию, разработанную компанией XYZ, которая революционизирует подход к возобновляемым источникам энергии. Результаты исследования свидетельствуют о значительном повышении эффективности и рентабельности.

VASA-1: технология глубокой подделки

Узнайте, как компания X произвела революцию в технологической отрасли благодаря своему революционному продукту, что привело к резкому росту продаж и интереса со стороны потребителей. Узнайте о неожиданном партнерстве между компаниями Y и Z, которое должно разрушить рынок.

Революционные рекомендации: Автоматическое обучение Amazon Personalize

Узнайте, как новая технология самостоятельного вождения Tesla совершает революцию в автомобильной промышленности. Узнайте, как их передовая система искусственного интеллекта прокладывает путь к полностью автономным автомобилям.

 Раскрытие пограничного слоя Земли с помощью глубокого обучения

Откройте для себя последние достижения в области технологий искусственного интеллекта благодаря новаторским исследованиям Google и Microsoft. Узнайте, как эти компании революционизируют будущее искусственного интеллекта.

Прогнозирование тенденций пассажиропотока авиакомпаний с помощью LightGBM

Откройте для себя последние революционные исследования ведущих технологических компаний в области беспилотных летательных аппаратов с искусственным интеллектом. Узнайте, как эти инновационные технологии совершают революцию в промышленности и формируют будущее автоматизации.

Освоение разработки функций с помощью Microsoft Fabric

Новое исследование показывает революционные выводы о влиянии технологий искусственного интеллекта на повышение удовлетворенности клиентов. Такие компании, как Google и Amazon, лидируют в области инновационных решений на основе ИИ.

Революция в логистике на последней миле с помощью искусственного интеллекта

Откройте для себя новаторскую технологию искусственного интеллекта, разработанную компанией Google, которая совершает революцию в сфере здравоохранения. Узнайте, как эта инновационная система способна с беспрецедентной точностью предсказывать результаты лечения пациентов.

Безопасный ИИ: использование генеративных технологий с AWS

Откройте для себя революционную технологию искусственного интеллекта, разработанную компанией Google, которая совершает переворот в анализе данных. Узнайте, как эта инновация способна изменить отрасли по всему миру.

Упрощение работы с данными с помощью SQL и преобразования текста в SQL в Amazon SageMaker Studio

Откройте для себя новаторские исследования компании Tesla в области новых устойчивых энергетических решений. Познакомьтесь с инновационным партнерством Apple и SpaceX в разработке передовых технологий.

Раскрытие возможностей Lifelong ML: будущее искусственного интеллекта

Узнайте, как инновационный стартап XYZ совершает революцию в технологической отрасли благодаря своей революционной технологии искусственного интеллекта. Узнайте, как ведущие компании уже внедряют продукты XYZ для повышения эффективности и производительности.

Эффективная кластеризация категориальных данных с помощью кодирования K-Means

Откройте для себя последние достижения в области технологий искусственного интеллекта благодаря новаторским исследованиям ведущих компаний. Узнайте, как инновационные продукты совершают революцию в промышленности по всему миру.

Эффективная классификация документов с помощью модели Amazon Titan

Узнайте, как компания XYZ произвела революцию в технологической отрасли благодаря своей новаторской технологии искусственного интеллекта. Узнайте, как их инновационный продукт изменил рынок и установил новые стандарты эффективности и производительности.

Магия науки о данных: Определение местонахождения террористов

Новое захватывающее исследование раскрывает революционную технологию искусственного интеллекта, разработанную Google и Tesla. Инновационное программное обеспечение обещает произвести революцию в автомобильной промышленности.

Автоматизация аннотирования изображений с помощью AWS для активного обучения

Узнайте о новаторском исследовании компании XYZ, посвященном новому методу лечения рака с помощью нанотехнологий. Их инновационный подход показывает многообещающие результаты в эффективном воздействии на опухолевые клетки.

SafeChat: Повышение эффективности ответов чатботов с искусственным интеллектом

Узнайте, как компания X произвела революцию в технологической отрасли благодаря своей революционной технологии искусственного интеллекта, установив новый стандарт инноваций. Узнайте о влиянии их продукта на бизнес по всему миру.

Персонализированные стратегии лечения с помощью обучения с учетом результатов

Узнайте, как последняя модель iPhone от Apple революционизирует фотографию на смартфон благодаря передовым функциям камеры. Узнайте, как новая технология самостоятельного вождения Tesla повлияет на будущее транспорта.

Mastering Reinforcement Learning: A Comprehensive Guide

Узнайте, как компания XYZ произвела революцию в технологической отрасли благодаря своей новаторской технологии искусственного интеллекта. Узнайте, как их продукт меняет методы работы предприятий по всему миру.

Пробуждение бактерий: ИИ нацелен на устойчивые штаммы

Откройте для себя новейшую революционную технологию, разработанную компанией Tesla для своей новой модели электромобиля. Узнайте, как эта инновация способна произвести революцию в автомобильной промышленности.

Улучшение модерации контента с помощью Amazon Rekognition

Откройте для себя новаторское сотрудничество компаний Tesla и SpaceX, совершивших революцию в области электромобилей и космических путешествий. Узнайте, как их инновационные технологии формируют будущее транспорта.

Развенчание городских тепловых островов в Грейменере с помощью Amazon SageMaker

Откройте для себя новаторское сотрудничество между Tesla и SpaceX, совершающее революцию в области электромобилей и освоения космоса. Откройте для себя последние инновации в области устойчивой энергетики и межпланетных путешествий.

Стратегическое обучение PAC

Откройте для себя последний прорыв в области технологий искусственного интеллекта благодаря запуску Neuralink от Элона Маска. Революционный интерфейс "мозг-машина" обещает объединить человеческий и искусственный интеллект.

Nielsen Sports сокращает расходы на анализ видео с помощью Amazon SageMaker

Узнайте, как новая технология автономного вождения Tesla совершает революцию в автомобильной промышленности. Благодаря передовым алгоритмам искусственного интеллекта и новейшим датчикам Tesla прокладывает путь к созданию автономных автомобилей.

Освоение машинного обучения с помощью Amazon SageMaker

Узнайте о новаторском сотрудничестве между Tesla и SpaceX по созданию устойчивых энергетических решений для космических путешествий. Видение Элона Маска о полностью устойчивой колонии на Марсе сейчас ближе к реальности, чем когда-либо.

Освоение кластеризации данных с помощью самоорганизующихся карт на JavaScript

Откройте для себя новейшие новаторские технологии, разработанные компанией Tesla и совершившие революцию в индустрии электромобилей. Узнайте, как инновационные функции автономного вождения устанавливают новые стандарты автомобильной безопасности и удобства.

Текстильный переполох

Новое исследование показывает революционную технологию искусственного интеллекта, разработанную компанией Google, которая революционизирует будущее анализа данных. Компании по всему миру спешат внедрить эту революционную инновацию.

Оптимизация доступа с помощью AWS IAM для Amazon SageMaker Canvas

Узнайте, как компания X произвела революцию в технологической отрасли благодаря своему революционному продукту, что привело к резкому росту продаж и доминированию на рынке. Узнайте, как их инновационный подход к технологии искусственного интеллекта выделил их среди конкурентов и вывел на передовые позиции в отрасли.

Использование возможностей больших языковых моделей для маркировки данных

Узнайте, как последняя модель iPhone от Apple совершает революцию в мобильной фотографии благодаря передовой технологии камеры. Познакомьтесь с революционными функциями нового обновления iOS, которое обещает расширить возможности пользователей.

Модели солнечных батарей теперь в Amazon SageMaker

Откройте для себя последний прорыв в области технологий искусственного интеллекта, представив новый революционный продукт компании XYZ. Эта революционная новинка изменит стандарты индустрии и произведет революцию в нашем взаимодействии с машинами.

Помощь искусственного интеллекта: Упрощение реагирования на гуманитарные кризисы

Узнайте, как компания X произвела революцию в отрасли благодаря своему революционному продукту, что привело к резкому росту прибыли и удовлетворенности клиентов. Узнайте об инновационной технологии, лежащей в основе их успеха, и о том, как она формирует будущее рынка.

Освоение шаблонов RAG в SageMaker

Узнайте, как компания X произвела революцию в отрасли благодаря своему революционному продукту, демонстрирующему передовые технологии. Узнайте, как их инновационный подход установил новые стандарты для конкурентов на рынке.

Декодирование категориальных кодировщиков: Исчерпывающее руководство

Откройте для себя новаторское сотрудничество компаний Tesla и SpaceX в разработке новых устойчивых энергетических решений. Узнайте, как их инновационные технологии меняют представление о том, как мы питаем наш мир.

Среднее значение и центроид: Распаковка ключевых различий

Узнайте, как компания XYZ произвела революцию в технологической отрасли благодаря своей новаторской технологии искусственного интеллекта. Узнайте, как их продукт превзошел конкурентов, что привело к резкому росту доминирования на рынке.

Кластеризация SOM: Реализация на Python

Узнайте, как компания XYZ произвела революцию в технологической отрасли благодаря своей инновационной технологии искусственного интеллекта. Узнайте, как их продукт нарушил традиционные бизнес-модели и установил новые стандарты.

Выбор правильной оценки: Модель против задачи

Откройте для себя последний прорыв в области технологий искусственного интеллекта с помощью нового самоуправляемого автомобиля Tesla. Эта революция в автомобильной промышленности обещает более безопасный и эффективный транспорт.

Алгоритм Массачусетского технологического института предсказывает экстремальные погодные условия

Узнайте о последнем прорыве в технологии искусственного интеллекта от Google, революционизирующем способ взаимодействия с машинами. Изучите потенциальное влияние на отрасли и повседневную жизнь.

Безопасная разработка приложений с Amazon Transcribe

Новое исследование показывает революционную технологию, разработанную компанией Tesla для решения проблемы устойчивой энергетики. Такие компании, как Google и Apple, инвестируют в инициативы в области чистой энергии.

Исследование персон с помощью искусственного интеллекта: Создание синтетических представлений

Новое исследование показывает, что революционная технология искусственного интеллекта, разработанная Google, произведет революцию в анализе данных в сфере здравоохранения. Такие компании, как IBM и Microsoft, вкладывают значительные средства в исследования ИИ, чтобы оставаться конкурентоспособными на рынке.

Расшифровка GPT2-Small: понимание предсказаний повторяющихся жетонов

Лингвистическое мастерство ChatGPT поражает исследователей, но его внутренняя работа остается загадкой. Механистическая интерпретация проливает свет на предсказания GPT2-Small о повторяющихся лексемах, открывая интригующие сведения о механизмах языковой модели.

"Расширение возможностей промышленных операций с помощью генеративного ИИ

ИИ и ОД революционизируют производство, но при работе с огромными неструктурированными данными остаются проблемы. Генеративный ИИ, такой как Claude, демократизирует доступ к ИИ для мелких производителей, повышая производительность и улучшая процесс принятия решений. Многокадровые подсказки повышают точность генерации кода для сложных NLQ, увеличивая возможности FM в расширенной обработке данны...

'Улучшение Code Llama с помощью SageMaker JumpStart'

Meta представляет возможность тонкой настройки моделей Code Llama с помощью Amazon SageMaker JumpStart для повышения точности и объяснимости. Code Llama предлагает расширенные возможности кодирования, поддерживая популярные языки программирования и демонстрируя улучшенную производительность в бенчмарках HumanEval и MBPP.

Исследователи Массачусетского технологического института революционизируют иммунотерапию рака с помощью искусственного интеллекта

Исследователи Массачусетского технологического института возглавляют команду MATCHMAKERS в проекте Cancer Grand Challenges, направленном на революцию в иммунотерапии рака с помощью искусственного интеллекта. Междисциплинарная команда будет предсказывать распознавание Т-клеток с помощью лабораторных тестов для персонализированного лечения, финансируемого фондом The Mark Foundation и другими орг...

Безопасное федеративное обучение для здравоохранения на AWS

Федеративное обучение обеспечивает конфиденциальность данных при обучении ML, что очень важно для таких регулируемых отраслей, как здравоохранение. FedML, Amazon EKS и SageMaker используются для улучшения результатов лечения пациентов и решения проблем безопасности данных при прогнозировании заболеваний сердца.

Разблокирование данных о здравоохранении: Сила объединенного обучения

Федеративное обучение в здравоохранении может кардинально изменить диагностику инсульта с помощью облачных сервисов AWS. Среди проблем - разрозненность данных, проблемы конфиденциальности и нормативные ограничения.

Использование генеративного искусственного интеллекта в AWS: Лучшие практики для создания мощных приложений

Приложения генеративного ИИ на основе фундаментальных моделей приносят пользу бизнесу в сфере обслуживания клиентов и инноваций. Проблемы включают в себя качество вывода, конфиденциальность данных и стоимость, но такие решения, как оперативное проектирование и RAG, могут помочь организациям использовать мощь ФМ с помощью AWS Bedrock.

Оптимизация кросс-аккаунтного доступа к S3 для ноутбуков SageMaker с помощью точек доступа S3

ИИ и ОД трансформируют финансовую сферу для выявления мошенничества, оценки кредитоспособности и оптимизации торговых операций. Точки доступа Amazon S3 упрощают безопасный доступ к данным в масштабе.

'Представляем Gemma: последнее дополнение к Amazon SageMaker JumpStart'

Захватывающие новости: Модели Gemma теперь доступны на Amazon SageMaker JumpStart! Gemma предлагает самые современные языковые модели, содержащие до 6 триллионов лексем. Изучите превосходную производительность Gemma в различных областях и получите доступ к базовым моделям в SageMaker для быстрой разработки ML.

Раскрытие возможностей больших языковых моделей в чатботах

LLM на базе графических процессоров NVIDIA позволяют чат-ботам вести естественную беседу и помогать в выполнении различных задач, таких как написание кода и открытие лекарств. Их универсальность и эффективность делают их незаменимыми в таких отраслях, как здравоохранение, розничная торговля, финансы и многих других, революционизируя работу со знаниями.

Разгадка причинности: использование причинно-следственных графов в машинном обучении

В статье рассматривается интеграция причинно-следственных рассуждений в ML с помощью причинно-следственных графов. Причинные графы помогают отделить причины от корреляций, что очень важно для причинного вывода. ML не в состоянии ответить на вопросы о причинно-следственных связях из-за ложных корреляций, конфаундеров, коллайдеров и медиаторов. Структурные причинно-следственные модели (SCM) пред...

'Персонализированные рекомендации продуктов: Успех VistaPrint с Amazon Personalize'

VistaPrint сотрудничает с малыми предприятиями по всему миру и использует Amazon Personalize для повышения конверсии на 10% и снижения затрат на 30%. Новая облачная нативная система, использующая Twilio Segment и сервисы AWS, предоставляет персонализированные рекомендации по продуктам для повышения качества обслуживания клиентов.

Разблокировка 3D-понимания из 2D-изображений с помощью Sun RGB-D

Доступ к набору данных Sun RGB-D для получения 3D-понимания из 2D-изображений. Набор данных включает сцены в помещении с 2D- и 3D-аннотациями, полученными с помощью различных 3D-сканеров. Изучите код Python, чтобы получить доступ к этому ценному ресурсу для более глубокого понимания ML.

Улучшение периферийного зрения ИИ

Исследователи Массачусетского технологического института разработали набор данных для имитации периферийного зрения в моделях искусственного интеллекта, что улучшает обнаружение объектов. Понимание периферийного зрения машинами может повысить безопасность водителей и предсказать поведение людей, преодолевая разрыв между ИИ и человеческим зрением.

'Бывший инженер Google арестован за кражу коммерческой тайны ИИ'

Бывший инженер Google, работавший с китайскими компаниями, арестован за кражу коммерческих секретов ИИ. Утверждается, что он копировал подробную информацию о чипах GPU и TPU, суперкомпьютерных системах.

Unraveling Graph Neural Networks: От теории к реализации Pytorch

Графовые нейронные сети (ГНС) моделируют взаимосвязанные данные, такие как молекулярные структуры и социальные сети. GNN в сочетании с последовательными моделями создают пространственно-временные GNN, открывающие возможности для более глубокого понимания и инновационного применения в промышленности/исследованиях.

Революция в сфере MLOps с помощью Vertex AI: платформа, меняющая правила игры

Создание масштабируемых ML-конвейеров Kubeflow на базе Vertex AI, "взлом" готовых контейнеров Google. Платформа MLOps упрощает жизненный цикл ML благодаря модульной архитектуре и интеграции с Google Vertex AI.

Революция в тестировании программного обеспечения с помощью генеративного искусственного интеллекта

Генеративный ИИ создает реалистичные синтетические данные для различных отраслей. Synthetic Data Vault, разработанный специалистами Массачусетского технологического института, революционизирует тестирование программного обеспечения и помогает организациям принимать обоснованные решения на основе синтетических данных.

Революционный анализ отзывов покупателей с помощью Amazon Bedrock

Alida использовала модель Claude Instant компании Anthropic на Amazon Bedrock, чтобы в 4-6 раз улучшить утверждение темы в ответах на опросы, преодолев ограничения традиционного NLP. Amazon Bedrock позволил Alida быстро создать масштабируемый сервис для исследователей рынка, собирающий качественные данные с нюансами, выходящими за рамки вопросов с несколькими вариантами ответов.

Ускорение разработки ботов Genesys Cloud Amazon Lex

Технологии AI и ML улучшают качество обслуживания в контакт-центрах благодаря ботам самообслуживания, аналитике звонков в реальном времени и аналитике после звонка. Интеграция Amazon Lex и Genesys Cloud упрощает процесс разработки ботов, превращая контакт-центры в центры прибыли.

Код искусственного интеллекта на платформе Hugging Face устанавливает бэкдоры на устройства пользователей

Платформа искусственного интеллекта Hugging Face неосознанно размещала на пользовательских машинах вредоносное ПО, в том числе бэкдоры. Исследователи JFrog обнаружили 100 вредоносных программ, одна из которых предоставляла полный контроль над удаленными устройствами.

Навигация по неопределенности: Байесовский подход

Тамара Бродерик, преподаватель Массачусетского технологического института, использует байесовский вывод для количественной оценки неопределенности в методах анализа данных. Сотрудничая в разных областях, она помогает разрабатывать такие инструменты, как модель машинного обучения для океанских течений и инструмент для людей с нарушением двигательных функций.

Революционный ИИ в Deutsche Bahn с помощью Amazon SageMaker Studio

Проблемы с платформами ИИ в крупных организациях включают соблюдение требований, безопасность и масштабируемость. Deutsche Bahn использует Amazon SageMaker Studio для проектов ИИ, что дает такие преимущества, как совместная работа, масштабируемость и экономическая эффективность.

Освоение PCA с SVD в C#

Откройте для себя возможности анализа главных компонент (PCA) с помощью разложения по сингулярным значениям (SVD) на C#. Преобразуйте наборы данных для визуализации или прогнозирования, используя всего девять элементов данных. PCA - это ключевая техника для уменьшения размерности и анализа данных, которая находит применение в машинном обучении и обнаружении аномалий.

Улучшение пользовательского опыта с помощью ИИ: Amazon Personalize и OpenSearch

OpenSearch - это универсальный программный пакет с открытым исходным кодом для поиска, аналитики и мониторинга, а Amazon Personalize предлагает сложные возможности персонализации, не требующие специальных знаний в области ML. Предприятия могут повысить вовлеченность пользователей и конверсию, используя эти технологии для улучшения релевантности поиска и создания персонализированных рекомендаций.

Автоматизация конвейеров Amazon SageMaker: Оптимизация рабочего процесса ML

Автоматизируйте рабочие процессы ML с помощью динамической структуры для конвейеров Amazon SageMaker Pipelines, обеспечивающей воспроизводимость, масштабируемость и гибкость. Управление моделями улучшено благодаря интеграции реестра моделей для отслеживания версий и уверенного продвижения в производство.

Ускорение ML с помощью Amazon SageMaker: История успеха компании Axfood

Компания Axfood AB, второй по величине шведский ритейлер продуктов питания, сотрудничала с AWS, чтобы создать прототип новой передовой практики MLOps для эффективных ML-моделей. Они повысили масштабируемость и эффективность, сотрудничая с экспертами AWS и используя Amazon SageMaker, сосредоточившись на прогнозировании продаж фруктов и овощей для оптимизации запасов в магазине и минимизации пищ...

Разблокировка быстрого поиска ближайших соседей: История HNSW

Изучите сложный, но эффективный подход Hierarchical Navigable Small World (HNSW) для быстрого поиска ближайших соседей. Проанализируйте историю и тонкости HNSW, чтобы понять его высокоскоростные и высокоточные возможности.

 Расшифровка неудач машинного обучения

Подводные камни машинного обучения: чрезмерная подгонка, недостоверные данные, скрытые переменные. Примеры включают неудачные модели прогнозирования Covid и системы качества воды. Представлен контрольный список REFORMS для предотвращения ошибок в науке, основанной на МЛ.

Раскрытие возможностей прямой оптимизации предпочтений

В статье "Прямая оптимизация предпочтений" представлен новый способ точной настройки моделей оснований, позволяющий добиться впечатляющего прироста производительности при меньшем количестве параметров. Метод заменяет необходимость в отдельной модели вознаграждения, революционизируя способ оптимизации LLM.

 Оптимизация процесса обнаружения аномалий в производственных данных с помощью Amazon SageMaker Canvas

Amazon SageMaker Canvas позволяет специалистам в данной области создавать мощные аналитические и ML-модели без кодирования. Он помогает обнаружить аномальные точки данных в промышленных машинах, что крайне важно для прогнозирования технического обслуживания и повышения производительности.

 Эффективный и экономичный ML-интерпретатор с MME Amazon SageMaker

MME Amazon SageMaker позволяют динамически распределять вычисления для моделей, экономя затраты и оптимизируя эффективность. DJLServing обеспечивает масштабирование по моделям для MME, не зависящих от схемы трафика.

Построение кластеризации самоорганизующихся карт на C# для анализа данных

Основные моменты статьи: Распространена кластеризация по методу K-means, но используются и другие методы, такие как DBSCAN, модель гауссовой смеси и спектральная кластеризация. Кластеризация с помощью самоорганизующейся карты (SOM) создает кластеры на основе сходства. Реализация на C# с использованием набора данных Penguin показывает результаты кластеризации.

Mastering Causal Inference: A Free Self-Study Guide

Овладение навыками вывода причинно-следственных связей крайне важно в современном мире, основанном на данных, к которым Google Trends проявляет все больший интерес. Приобретите этот ценный навык с помощью руководства для самостоятельного изучения, применимого для всех уровней и профессий.

 Диаризация с помощью искусственного интеллекта: Революция в локализации от ZOO Digital

ZOO Digital революционизирует локализацию контента с помощью автоматизированной диаризации с использованием Amazon SageMaker, сокращая ручной труд и время. Компания ZOO Digital, которой доверяют ведущие деятели индустрии развлечений, стремится выполнить локализацию менее чем за 30 минут благодаря масштабируемым моделям машинного обучения.

Meta's Code Llama 70B: развертывание в один клик с помощью Amazon SageMaker JumpStart

Фундаментальные модели Code Llama компании Meta, доступные на Amazon SageMaker JumpStart, предлагают самые современные возможности большого языка для генерации кода и естественного языка о коде. Модели представлены в трех вариантах с количеством параметров до 70B и предназначены для повышения производительности разработчиков на различных языках программирования. SageMaker JumpStart предоставля...

Откройте для себя код Llama 70B в SageMaker JumpStart

Фундаментальные модели Code Llama компании Meta, доступные в Amazon SageMaker JumpStart, предлагают самые современные большие языковые модели для генерации кода и подсказок на естественном языке. Code Llama выпускается в трех вариантах и различных размерах, обученных на миллиардах лексем и обеспечивающих стабильные поколения с контекстом до 100 000 лексем. SageMaker JumpStart предлагает доступ...

Использование возможностей Amazon SageMaker Canvas для обнаружения производственных аномалий

Amazon SageMaker Canvas предоставляет экспертам в данной области интерфейс без кода для создания мощных аналитических и ML-моделей, решая дилемму набора навыков в процессе принятия решений на основе данных. В этом посте показано, как SageMaker Canvas можно использовать для обнаружения аномалий в производственной отрасли, помогая выявлять неисправности или необычные операции промышленных машин.

Революционные эксперименты в области ML: Путешествие Booking.com с Amazon SageMaker

Booking.com сотрудничал с AWS Professional Services, чтобы использовать Amazon SageMaker и модернизировать свою инфраструктуру ML, сократив время ожидания для обучения моделей и проведения экспериментов, интегрировав основные возможности ML и сократив цикл разработки моделей ML. Это улучшило работу поисковых систем и принесло пользу миллионам путешественников по всему миру.

Раскрытие возможностей PCA: упрощение анализа данных и машинного обучения с помощью C#

Статья "Principal Component Analysis (PCA) from Scratch Using the Classical Technique with C#" в Microsoft Visual Studio Magazine объясняет, как PCA может уменьшить количество столбцов в наборе данных и как он применяется в алгоритмах машинного обучения. В статье также обсуждается сложность вычисления собственных значений и собственных векторов и приводится демонстрация на примере подмножества...

Автоматизация обнаружения мошенничества при оформлении ипотечных документов с помощью ML и Amazon Fraud Detector

Автоматизируйте выявление мошенничества с ипотечными документами с помощью ML-моделей и правил, определяемых бизнесом, с помощью Amazon Fraud Detector - полностью управляемой службы выявления мошенничества. Загрузите исторические данные, обучите модель, проверьте ее производительность и разверните API для составления прогнозов, чтобы повысить точность обнаружения мошенничества и андеррайтинга.

Взламывая код: Основные методы кодирования в машинном обучении

В этой статье рассматриваются три ключевых метода кодирования для машинного обучения: кодирование меток, однократное кодирование и целевое кодирование. В ней представлено руководство для начинающих с описанием преимуществ, недостатков и примерами кода на Python, которое поможет специалистам по исследованию данных понять и эффективно реализовать эти методы.

Автоматизация обнаружения неблагоприятных событий: Использование больших языковых моделей на Amazon SageMaker

В 2021 году доходы фармацевтической промышленности США составили 550 миллиардов долларов, а прогнозируемые расходы на фармаконадзор к 2022 году - 384 миллиарда долларов. Для решения задач мониторинга нежелательных явлений разработано решение на основе машинного обучения с использованием Amazon SageMaker и модели BioBERT компании Hugging Face, обеспечивающее автоматическое обнаружение из различ...

MIT-Pillar AI Collective: Расширение возможностей инноваторов в области ИИ и науки о данных для коммерциализации

Коллектив MIT-Pillar AI Collective объявляет о назначении шести стипендиатов на весну 2024 года, которые будут поддерживать аспирантов, проводящих исследования в области ИИ, машинного обучения и науки о данных, с целью коммерциализации их инноваций. Среди стипендиатов - Ясмин Аль-Фарадж, работающая над созданием экологически чистых пластмасс, и Рубен Кастро Орнелас, разрабатывающий многоцелевы...

Геопространственная аналитика: Предотвращение распространения зоонозных заболеваний с помощью SageMaker

HSR.health использует геопространственные возможности Amazon SageMaker для создания инструмента, предоставляющего точную информацию о распространении заболеваний, чтобы предотвратить вспышки зоонозных болезней до того, как они станут глобальными. Индекс риска использует более 20 факторов для оценки взаимодействия человека и дикой природы и использует спутниковые снимки и дистанционное зондиров...

Раскрытие возможностей генеративного ИИ: представление моделей Llama 2 и Mistral в Amazon SageMaker Canvas

Amazon SageMaker Canvas, запущенный в 2021 году, предлагает свободный от кода подход к построению и развертыванию моделей машинного обучения. В последних обновлениях появились новые возможности генеративного ИИ, включая поддержку моделей Meta Llama 2 и Mistral.AI, благодаря чему пользователи могут использовать возможности ИИ без написания кода.

Устранение неравенства в диагностике: Врачи пытаются диагностировать кожные заболевания у людей с более темной кожей

Врачи с меньшей точностью диагностируют кожные заболевания на темной коже: дерматологи точно характеризуют лишь 34% изображений по сравнению с 38% для светлой кожи. Алгоритмы искусственного интеллекта могут повысить точность, но такое несоответствие говорит о необходимости изменений в образовании и подготовке дерматологов.

ИИ: мощное решение для борьбы с изменением климата

В новом исследовании ITIF содержится призыв к правительствам внедрять искусственный интеллект для повышения энергоэффективности в различных отраслях, приводятся примеры, когда фермеры используют искусственный интеллект для снижения расхода удобрений и воды, а заводы - для повышения энергоэффективности. Автор исследования подчеркивает необходимость того, чтобы политики не сдерживали полезное ис...

Использование силы симметрии в машинном обучении

Аспирант Массачусетского технологического института Бехруз Тахмасеби и его советник Стефани Джегелька модифицировали закон Вейля, включив симметрию в оценку сложности данных, что потенциально может улучшить машинное обучение. Их работа, представленная на конференции Neural Information Processing Systems, демонстрирует, что модели, удовлетворяющие симметрии, могут давать предсказания с меньшими...

Раскрытие ценности вашей команды по работе с данными: Пирамида окупаемости инвестиций в данные

Узнайте, как рассчитать рентабельность инвестиций (ROI) вашей команды данных с помощью пирамиды Data ROI, которая фокусируется на определении ценности инициатив команды данных, таких как панели мониторинга оттока клиентов и инициативы по повышению качества данных. Пирамида также подчеркивает, что сокращение времени простоя данных является ключевой стратегией для увеличения ROI.

Создание устойчивых генеративных рабочих нагрузок ИИ: Соображения и лучшие практики

Устойчивость крайне важна для рабочих нагрузок генеративного ИИ, чтобы соответствовать требованиям к доступности и непрерывности бизнеса организации. Решения на основе генеративного ИИ предполагают новые роли, инструменты и такие аспекты, как оперативная проверка и конвейеры данных.

Раскрытие потенциала искусственного интеллекта: Быстрая и безопасная подготовка данных с помощью SageMaker Canvas

Данные имеют решающее значение для максимизации ценности искусственного интеллекта и эффективного решения бизнес-задач. Amazon SageMaker Canvas революционизирует подготовку данных для аналитиков по безопасности, позволяя им без особых усилий получать доступ к базовым моделям, извлекать ценность и устранять риски кибербезопасности.

Использование возможностей текстовых вкраплений Amazon Titan: Революция в приложениях NLP и ML

Amazon Titan Text Embeddings - это модель встраивания текста, которая преобразует текст на естественном языке в числовые представления для поиска, персонализации и кластеризации. В ней используются алгоритмы вкрапления слов и большие языковые модели для выявления семантических связей и улучшения последующих задач NLP.

Обнаружение подделки изображений в масштабе: Построение модели компьютерного зрения на Amazon SageMaker

Автоматизация обнаружения фальсификации документов и мошенничества в масштабе с помощью сервисов искусственного интеллекта и машинного обучения AWS для андеррайтинга ипотечных кредитов. Разработка модели компьютерного зрения на основе глубокого обучения для обнаружения и выделения поддельных изображений при ипотечном андеррайтинге с помощью Amazon SageMaker.

Сила Адама: раскрываем математику, стоящую за самым популярным оптимизатором глубокого обучения

В статье рассматриваются математические основы оптимизатора Adam, объясняется, почему он является самым популярным оптимизатором в глубоком обучении. Она углубляется в механику Adam, подчеркивая его адаптивную скорость обучения и способность регулировать размер шага в зависимости от сложности данных.

Unlocking Time Series Analysis: Освоение Facebook Prophet для точных предсказаний

В этой статье приводится практическое руководство по использованию Facebook Prophet для анализа временных рядов, направленное на устранение начальных барьеров. Prophet - это инструмент с открытым исходным кодом от Facebook, который с легкостью создает точные прогнозы временных рядов, что делает его идеальным для бизнес-приложений.

Разблокировка производительности: Бенчмаркинг и оптимизация развертывания конечных точек в Amazon SageMaker JumpStart

В этой статье рассматривается сложная взаимосвязь между задержкой и пропускной способностью при развертывании больших языковых моделей (LLM) с помощью Amazon SageMaker JumpStart. Бенчмаркинг таких LLM, как Llama 2, Falcon и варианты Mistral, показывает влияние архитектуры модели, конфигурации сервисов, типа оборудования экземпляра и одновременных запросов на производительность.

Раскрытие "черного ящика": ИИ в здравоохранении и одобрение FDA

В клинике MIT Abdul Latif Jameel Clinic for Machine Learning in Health обсуждался вопрос о том, следует ли полностью объяснять "черный ящик" процесса принятия решений моделями ИИ для получения разрешения FDA. Мероприятие также подчеркнуло необходимость образования, доступности данных и сотрудничества между регулирующими органами и медицинскими специалистами при регулировании ИИ в здравоохранении.

Революция в области устойчивых инноваций: Путешествие биоматериалов Атакамы

Стартап Atacama Biomaterials, объединяющий архитектуру, машинное обучение и химическую инженерию, разрабатывает экологически чистые материалы, имеющие множество применений. Их технология позволяет создавать библиотеки данных и материалов с помощью ИИ и ОД, производя региональные, компостируемые пластики и упаковку.

От авиации до искусственного интеллекта: применение стандартов безопасности для здоровья

Риск смертельного исхода в авиации составляет 0,11, что делает ее одним из самых безопасных видов транспорта. Ученые MIT рассматривают авиацию как модель для регулирования ИИ в здравоохранении, чтобы гарантировать, что маргинальные пациенты не пострадают от предвзятых моделей ИИ.

Раскрытие возможностей GPT-1: глубокое погружение в первую версию революционной языковой модели

В 2017 году Google Brain представил Transformer - гибкую архитектуру, которая превзошла существующие подходы к глубокому обучению и теперь используется в таких моделях, как BERT и GPT. GPT, модель декодера, использует задачу языкового моделирования для генерации новых последовательностей и следует двухэтапной схеме предварительного обучения и тонкой настройки.

Защита генеративного ИИ: архитектура глубокой защиты для приложений LLM

Генеративные приложения ИИ, использующие большие языковые модели (БЯМ), имеют большую экономическую ценность, но управление безопасностью, конфиденциальностью и соответствием нормативным требованиям имеет решающее значение. В этой статье представлены рекомендации по устранению уязвимостей, внедрению передовых методов обеспечения безопасности и разработке стратегий управления рисками для прилож...

Singular Value Decomposition (SVD) Made Simple: Рефакторинг алгоритма Якоби в Python

В статье рассматривается алгоритм разложения по сингулярным значениям (SVD) и процесс рефакторинга автором алгоритма Якоби из GNU Scientific Library в Python/NumPy. Автор проверяет свою функцию SVD, созданную "на скорую руку", с помощью функции np.linalg.svd() и подчеркивает полезность SVD в классической статистике и машинном обучении.

Упрощение проверки вакцинации с помощью Amazon Textract: пошаговое руководство

Amazon Textract - это ML-сервис, который с высокой точностью извлекает текст и данные из отсканированных документов, автоматизируя обработку документов для различных целей. Он предлагает решение для упрощения проверки статуса прививок, предоставляя точную информацию из карт прививок с помощью запросов Amazon Textract.

Unveiling Hidden Patterns: Реализация спектральной кластеризации с нуля на Python

Спектральная кластеризация, сложная форма машинного обучения, преобразует данные в форму с пониженной размерностью и применяет кластеризацию k-means. Реализация спектральной кластеризации с нуля на Python была непростой задачей, но результаты оказались идентичны модулю scikit-learn, а самой сложной частью стало вычисление собственных значений и собственных векторов нормализованной матрицы Лапл...

Раскрытие галлюцинаций LLM: Метрики для выявления правдивости в ответах на вопросы

В этой статье рассматривается актуальная тема галлюцинаций LLM в исследованиях ИИ, подчеркивая значительные последствия ошибок или лжи, создаваемых большими языковыми моделями. В статье рассматриваются метрики для обнаружения и измерения галлюцинаций в рабочих процессах ответов на вопросы, с точностью 90 % для вопросов в закрытом домене и 70 % для вопросов в открытом домене.

Разгадка секретов RNN: Математические основы и реализация на Python

Появление таких инструментов, как AutoAI, может снизить значимость традиционных навыков машинного обучения, но глубокое понимание основополагающих принципов ML по-прежнему будет востребовано. Эта статья посвящена математическим основам рекуррентных нейронных сетей (РНС) и их использованию для выявления последовательных закономерностей в данных временных рядов.

Boosting BERT: ускорение времени вывода с помощью поиска нейронной архитектуры и автоматической настройки модели в SageMaker

В этой статье демонстрируется, как поиск нейронной архитектуры может быть использован для сжатия точно настроенной модели BERT, что повышает производительность и сокращает время вывода. Применение структурной обрезки позволяет уменьшить размер и сложность модели, что приводит к ускорению времени отклика и повышению эффективности использования ресурсов.

Раскрытие потенциала машинного обучения PySpark

Spark ML - это библиотека с открытым исходным кодом для высокопроизводительного хранения данных и классических алгоритмов машинного обучения. В статье демонстрируется демонстрация PySpark, предсказывающая политические пристрастия с помощью синтетического набора данных, рассказывается об использовании данных Spark и процессе установки.

Использование возможностей графического и геометрического ML: выводы и инновации на 2024 год

В этой статье авторы обсуждают теорию и архитектуры графовых нейронных сетей (ГНС) и подчеркивают появление графовых трансформаторов как тенденции в графовом ML. Они исследуют связь между MPNN и трансформерами, показывая, что MPNN с виртуальным узлом может имитировать трансформер, и обсуждают преимущества и ограничения этих архитектур с точки зрения выразительности.

Достижения в области графического и геометрического ML: приложения и прорывы в 2024 году

В 2023 году доминировали геометрические методы и приложения ML, а также заметные прорывы в структурной биологии, включая открытие двух новых антибиотиков с помощью GNN. Сближение ML и экспериментальных методов в автономных молекулярных открытиях является растущей тенденцией, как и использование Flow Matching для более быстрой и детерминированной выборки траекторий.

Раскрытие потенциала генеративного ИИ: генерация синтетических данных с помощью GANs

Генеративные адверсарные сети (GAN) произвели революцию в искусственном интеллекте, создавая реалистичные изображения и языковые модели, но их понимание может быть сложным. Эта статья упрощает GAN, фокусируясь на генерации синтетических данных математических функций, и объясняет различие между дискриминантными и генеративными моделями, которые составляют основу GAN.

Раскрытие потенциала великих аналитиков данных: 6 навыков для невероятной эффективности

Чтобы стать отличным аналитиком данных, необходимо развивать правильные навыки, включая свободное владение SQL, основы статистики и глубокие знания предметной области. Эти навыки позволяют аналитикам находить творческие решения, эффективно выполнять качественную работу и открывать ценные сведения.

Unleashing the Power of Text Embeddings: Преобразование приложений для финансового поиска с помощью Amazon Bedrock Cohere

Предприятия могут использовать текстовые вкрапления, созданные с помощью машинного обучения, для анализа неструктурированных данных и извлечения полезных сведений. Многоязычная модель встраивания Cohere, доступная на Amazon Bedrock, обеспечивает улучшенное качество документов, поиск для приложений RAG и экономически эффективное сжатие данных.

Революция в гольфе: облачное отслеживание мячей поднимает PGA TOUR на новую высоту

PGA TOUR разрабатывает систему отслеживания положения мяча нового поколения, использующую компьютерное зрение и методы машинного обучения для определения местоположения мячей для гольфа на путтинг-грине. Система, разработанная инновационным центром Amazon Generative AI, успешно отслеживает положение мяча и предсказывает его координаты для отдыха.

Раскройте мощь LDA: Практическое руководство по эффективному тематическому моделированию

Откройте для себя возможности Latent Dirichlet Allocation (LDA) для эффективного моделирования тем в машинном обучении и науке о данных. Узнайте, как LDA может применяться не только в текстовых данных, например, в интернет-магазинах и анализе потоков кликов, и как его можно интегрировать с другими вероятностными моделями для создания персонализированных рекомендаций.

Оптимизация рабочего процесса утверждения и продвижения ML-моделей с помощью человеческого вмешательства

В этой статье рассматривается масштабируемая платформа MLOps, автоматизирующая рабочий процесс утверждения и продвижения ML-моделей с помощью таких сервисов AWS, как Lambda, API Gateway, EventBridge и SageMaker. Решение включает в себя шаг вмешательства человека для утверждения модели перед переходом на следующий уровень среды.

Потоковая передача ответов в режиме реального времени: Повышение задержки и интерактивности с помощью моделей Llama 2 на Amazon SageMaker

Amazon SageMaker теперь поддерживает потоковую передачу ответов для выводов в реальном времени, обеспечивая интерактивный опыт и более быстрое время отклика в приложениях генеративного ИИ, таких как чат-боты и виртуальные помощники. В этой статье рассказывается о том, как решить проблемы задержки и реализовать это решение с помощью SageMaker и моделей Llama 2.

OpenAI раскрывает: Модели искусственного интеллекта невозможны без материалов, защищенных авторским правом

Компания OpenAI признала необходимость использования материалов, защищенных авторским правом, при разработке таких инструментов ИИ, как ChatGPT, заявив, что без этого было бы "невозможно". Практика соскабливания контента без разрешения стала предметом пристального внимания, поскольку такие модели ИИ, как ChatGPT и DALL-E, опираются на большое количество обучающих данных из публичного Интернета.

Усовершенствование нейронных сетей: Раскрытие возможностей абляционного тестирования

Основные моменты статьи: Отказоустойчивое тестирование нейронных сетей и архитектур ML для повышения надежности. Тестирование методом абляции позволяет выявить критические детали, снизить сложность и повысить отказоустойчивость. Три типа тестов на абляцию: нейронная, функциональная и входная абляция.

Unlocking Insights: Извлечение текста из документов с помощью Amazon Textract

Клиенты AWS из сферы здравоохранения, финансов и государственного сектора теперь могут извлекать ценные сведения из документов, хранящихся в Amazon S3, используя интеллектуальную обработку документов (IDP) AWS с помощью сервисов искусственного интеллекта, таких как Amazon Textract. Предлагаются два решения: сценарий на Python для быстрой обработки и готовое развертывание с использованием AWS C...

Рост числа специалистов по работе с данными, ориентированных на стоимость, в 2024 году

В 2024 году команды специалистов по работе с данными столкнутся с новой реальностью - они должны будут ориентироваться на окупаемость инвестиций и эффективность, поскольку в последние годы финансирование и рост значительно сократились. Чтобы справиться с этой ситуацией, специалисты по работе с данными должны запрашивать отзывы у заинтересованных сторон и решать проблемы, требующие улучшения, ч...

Оптимизация управления жизненным циклом Data Science с помощью AWS и Wipro

Сотрудничество Wipro с AWS помогает организациям преодолеть проблемы управления изолированными решениями в области науки о данных, обеспечивая автоматизацию, масштабируемость и качество моделей. Внедряя Amazon SageMaker, Wipro решает проблемы совместной работы, масштабируемости, MLOps и повторного использования для своих клиентов.

Раскрытие скрытой предвзятости: усовершенствование деревьев принятия решений и случайных лесов

В недавнем исследовании изучается, как деревья решений и случайные леса, широко используемые в машинном обучении, страдают от предвзятости из-за предположения о непрерывности признаков. В исследовании предложены простые методы, позволяющие уменьшить эту погрешность. Результаты показали, что при зеркальном отражении признаков эффективность ухудшается на 0,2 процентных пункта.

Раскрытие истины: тестирование оценок производительности машинного обучения с помощью mlscorecheck

В статье рассматривается использование пакета Python mlscorecheck для проверки соответствия заявленных оценок производительности машинного обучения и экспериментальных установок. Пакет mlscorecheck предоставляет численные методы для определения того, могут ли заявленные оценки быть результатом заявленного эксперимента.

Demystifying Principal Component Analysis (PCA) with C#: Упрощение снижения размерности для обнаружения аномалий, визуализации и машинного обучения

Анализ главных компонент (PCA) - это сложная техника, используемая для уменьшения размерности, которая включает в себя две основные методики: классическую и неклассическую. В статье обсуждаются проблемы реализации PCA с использованием классической техники и демонстрируется реализация на C# на подмножестве набора данных Iris Dataset.

Реализация ArgSort() в C#: Сортировка массивов и списков с легкостью

В статье показано, как реализовать функцию ArgSort() на языке C#, приведены примеры кода для массивов и списков. Подчеркивается наличие перегрузки C# Array.Sort(a,b), которая позволяет выполнять сортировку по значениям в массиве.

Представляем Mixtral-8x7B: развертывание мощной модели НЛП одним щелчком мыши на Amazon SageMaker JumpStart

Большая языковая модель Mixtral-8x7B от Mistral AI теперь доступна на Amazon SageMaker JumpStart для легкого развертывания. Благодаря многоязыковой поддержке и превосходной производительности Mixtral-8x7B является привлекательным выбором для приложений NLP, предлагая более высокую скорость вывода и более низкие вычислительные затраты.

Ускорение обучения больших языковых моделей с помощью Amazon SageMaker

Обучение большим языковым моделям (LLM) набрало популярность после выпуска таких популярных моделей, как Llama 2, Falcon и Mistral, но обучение в таких масштабах может быть сложным. Библиотека параллельной модели (SMP) Amazon SageMaker упрощает этот процесс благодаря новым возможностям, включая упрощенный пользовательский интерфейс, расширенную функциональность тензорного параллелизма и оптими...

Революция в контакт-центрах: Использование генеративного ИИ для обеспечения исключительного клиентского опыта

Отличный клиентский опыт имеет решающее значение для дифференциации бренда и роста доходов, и 80% компаний планируют увеличить инвестиции в CX. SageMaker Canvas и генеративный искусственный интеллект могут революционизировать сценарии звонков в контакт-центрах, повышая эффективность, сокращая количество ошибок и улучшая качество поддержки клиентов.

Использование возможностей Amazon SageMaker: Защита данных с помощью обнаружения аномалий

По мере расширения цифрового пространства заказчики сталкиваются с растущими угрозами безопасности и уязвимостями. Amazon Security Lake и Amazon SageMaker предлагают новое решение, централизуя и стандартизируя данные о безопасности, а также используя машинное обучение для обнаружения аномалий.

Представляем Llama Guard: Защита моделей ИИ в Amazon SageMaker JumpStart

Модель Llama Guard теперь доступна для Amazon SageMaker JumpStart, обеспечивая защиту ввода и вывода при развертывании больших языковых моделей. Llama Guard - это открытая модель, которая помогает разработчикам защититься от создания потенциально рискованных результатов, что позволяет легко внедрять лучшие практики и улучшать открытую экосистему.

Оптимизация операций ML в масштабе с помощью ускорителя Machine Learning Ops от PwC

Ускоритель PwC Australia Machine Learning Ops Accelerator, построенный на базе собственных сервисов AWS, упрощает процесс внедрения ML-моделей от разработки до производственного развертывания в масштабе. Ускоритель включает семь ключевых интегрированных возможностей для обеспечения непрерывной интеграции, непрерывной доставки, непрерывного обучения и непрерывного мониторинга моделей ML.

Разблокирование информации в режиме реального времени: MongoDB и SageMaker Canvas революционизируют процесс принятия решений

В статье рассматриваются проблемы, с которыми сталкиваются отрасли, не имеющие прогнозов в реальном времени, такие как финансы, розничная торговля, управление цепочками поставок и логистика. В ней подчеркивается потенциал использования управления данными временных рядов в MongoDB и Amazon SageMaker Canvas для преодоления этих проблем и принятия решений на основе данных.

Хроники искусственного интеллекта: Разгадка шумихи и влияния 2023 года

Генеративный искусственный интеллект в 2023 году захватил технологическую индустрию, доминируя в заголовках и вызывая споры. На фоне появления фигур, связанных с ИИ, у нетехнических людей возникает путаница в том, кому доверять, какие продукты ИИ использовать и представляет ли ИИ угрозу для их жизни и работы. Кроме того, неумолимый темп исследований в области машинного обучения продолжает вызы...

Раскрытие аномалий: Сравнительный анализ методов обнаружения выбросов

В этой статье рассматриваются алгоритмы машинного обучения для выявления выбросов и их применение к статистике биты Главной лиги бейсбола на 2023 год. Сравниваются четыре алгоритма: Elliptic Envelope, Local Outlier Factor, One-Class Support Vector Machine with Stochastic Gradient Descent и Isolation Forest. Цель - получить представление об их поведении и ограничениях, чтобы определить, какой а...

Сила экспоненциальной скользящей средней: Понимание анализа временных рядов

В этой статье рассматривается логика, лежащая в основе фундаментального алгоритма градиентного спуска, и особое внимание уделяется экспоненциальной скользящей средней. В ней рассматривается мотивация метода, его формула и математическая интерпретация распределения весов.

Раскрытие потенциала ML: Создание решений без кода с помощью Amazon DocumentDB и SageMaker Canvas

Компания Amazon объявила об интеграции Amazon DocumentDB с Amazon SageMaker Canvas, позволяющей пользователям строить ML-модели без кодирования. Эта интеграция позволяет компаниям анализировать неструктурированные данные, хранящиеся в Amazon DocumentDB, и создавать прогнозы, не прибегая к услугам специалистов по разработке данных и науке о данных.

Создайте свой собственный тренажерный зал искусственного интеллекта: Погружение в глубокое Q-обучение

Погрузитесь в мир искусственного интеллекта и создайте тренажер глубокого обучения с подкреплением с нуля. Получите практический опыт и создайте свой собственный тренажер для обучения агента решению простой задачи, заложив основу для создания более сложных сред и систем.

Революционный мониторинг горного оборудования с помощью AWS-прототипирования и компьютерного зрения

ICL, международная производственная и горнодобывающая корпорация, разработала собственные возможности машинного обучения и компьютерного зрения для автоматического мониторинга своего горнодобывающего оборудования. При поддержке программы AWS Prototyping они смогли создать на AWS фреймворк с использованием Amazon SageMaker для извлечения изображения с 30 камер с возможностью масштабирования до ...

Раскрытие возможностей RAG: усиление стабильной диффузии текста к изображениям

Генерация текста в изображения - быстро развивающаяся область ИИ, а Stable Diffusion позволяет пользователям создавать высококачественные изображения за считанные секунды. Использование технологии Retrieval Augmented Generation (RAG) улучшает подсказки для моделей Stable Diffusion, позволяя пользователям создать собственного помощника ИИ для генерации подсказок.

Повышение эффективности рабочего процесса ML: Представление пространств SageMaker Studio и инструментов генеративного ИИ

Amazon SageMaker Studio теперь предлагает полностью управляемый редактор кода на базе Code-OSS, а также JupyterLab и RStudio, позволяя разработчикам ML настраивать и масштабировать свои IDE с помощью гибких рабочих пространств, называемых Spaces. Эти пространства обеспечивают постоянное хранение и конфигурации времени выполнения, повышая эффективность рабочего процесса и позволяя легко интегри...

Дебаты о разведке: раскрытие истины, скрывающейся за ChatGPT

ChatGPT от OpenAI, новаторская языковая модель ИИ, вызвала восторг своими впечатляющими способностями, в том числе отличными результатами на экзаменах и игрой в шахматы. Однако скептики утверждают, что настоящий интеллект не следует путать с запоминанием, что привело к появлению научных исследований, изучающих это различие и выдвигающих аргументы против AGI.

Революция в области рекомендаций вакансий: Упорядоченная обработка данных Talent.com с помощью Amazon SageMaker

Компания Talent.com в сотрудничестве с AWS разработала систему рекомендаций по работе с использованием глубокого обучения, которая обрабатывает 5 миллионов ежедневных записей менее чем за 1 час. Система включает в себя разработку функций, проектирование архитектуры модели глубокого обучения, оптимизацию гиперпараметров и оценку модели, и все это выполняется на Python.

Предотвращение галлюцинаций ИИ: Использование векторной базы данных Pinecone и Llama-2 для создания дополненного поиска

Такие LLM, как Llama 2, Flan T5 и Bloom, необходимы для использования в разговорном ИИ, но для обновления их знаний требуется переобучение, что требует много времени и средств. Однако с помощью технологии Retrieval Augmented Generation (RAG), использующей Amazon Sagemaker JumpStart и векторную базу данных Pinecone, LLM можно развернуть и постоянно обновлять актуальную информацию, чтобы предотв...

Ускорение трансформации технологической компании Vodafone: Навыки ML с AWS DeepRacer и Accenture

К 2025 году компания Vodafone превратится в технологическую компанию, планируя, что 50 % ее сотрудников будут заниматься разработкой программного обеспечения, а 60 % цифровых услуг будут предоставляться собственными силами. Чтобы поддержать этот переход, Vodafone сотрудничает с Accenture и AWS для создания облачной платформы и участвует в конкурсе AWS DeepRacer, чтобы улучшить свои навыки маши...

Экономное обучение: Эффективное обучение моделей GPT NeoX и Pythia с помощью AWS Trainium

Большие языковые модели (LLM), такие как GPT NeoX и Pythia, набирают популярность, имея миллиарды параметров и впечатляющую производительность. Обучение этих моделей на AWS Trainium является экономичным и эффективным благодаря таким оптимизациям, как вращательное позиционное встраивание (ROPE) и методы частичного вращения.

Использование возможностей классических вычислений в нейронных сетях

В этой статье рассматривается важность классических вычислений в контексте искусственного интеллекта, подчеркивается их доказуемая корректность, сильное обобщение и интерпретируемость по сравнению с ограничениями глубоких нейронных сетей. В статье утверждается, что разработка систем ИИ, обладающих этими навыками классических вычислений, имеет решающее значение для создания интеллектуальных аге...

Оптимизация процесса MLO с помощью конвейеров Amazon SageMaker и действий GitHub

MLOps необходим для интеграции моделей машинного обучения в существующие системы, а Amazon SageMaker предлагает такие функции, как Pipelines и Model Registry, которые упрощают этот процесс. В этой статье приводится пошаговая реализация создания пользовательских шаблонов проектов, которые интегрируются с GitHub и GitHub Actions, обеспечивая эффективную совместную работу и развертывание ML-моделей.

Раскрытие скрытых закономерностей: кластеризация спектральных данных на C#

Спектральная кластеризация - это сложный метод машинного обучения, который позволяет выявить закономерности в данных. Ее реализация включает вычисление матриц сродства и Лапласиана, вложение собственных векторов и выполнение кластеризации k-means.

Революционная доставка на последнюю милю: Оптимизация управления трудовыми ресурсами с помощью Amazon Forecast и AWS Step Functions

Компания Getir, пионер в области сверхбыстрой доставки продуктов питания, внедрила комплексную систему управления персоналом с помощью Amazon Forecast и AWS Step Functions, что позволило на 70 % сократить время моделирования и на 90 % повысить точность прогнозирования. Этот комплексный проект рассчитывает потребности в курьерах и решает проблему распределения смен, оптимизируя графики смен и м...