Новостная лента об искусственном интеллекте и машинном обучении

Главные новости и публикации каждый день! Будьте на шаг впереди: узнавайте первыми про новые идеи, тренды и инновации в сфере технологий

Google защищает спорное решение на собрании всех сотрудников

Руководство Google на недавнем собрании всех сотрудников раскрыло планы по прекращению инициатив по разнообразию и отмене обещания по борьбе с оружейным ИИ. Решение компании обновить программы обучения и участвовать в геополитических дискуссиях вызвало споры среди сотрудников.

Раскрытие возможностей LLM в оценке моделей Amazon Bedrock

Amazon Bedrock представляет LLM-as-a-judge для оценки моделей ИИ, предлагая автоматизированную и экономически эффективную оценку по нескольким метрикам. Эта инновационная функция упрощает процесс оценки, повышая надежность и эффективность ИИ для принятия обоснованных решений.

Освоение переменных окружения с помощью Pydantic

Разработчики используют Pydantic для безопасной работы с переменными окружения, храня их в файле .env и загружая с помощью python-dotenv. Этот метод обеспечивает конфиденциальность данных и упрощает настройку проекта для других разработчиков.

Высвобождение силы законов масштабирования в искусственном интеллекте

Законы масштабирования ИИ описывают, как различные способы применения вычислений влияют на производительность модели, что приводит к усовершенствованию моделей рассуждений ИИ и ускорению спроса на вычисления. Масштабирование при предварительном обучении показывает, что увеличение объема данных, размера модели и вычислений повышает производительность модели, стимулируя инновации в архитектуре м...

Обеспечение точности: Оценка ответов больших языковых моделей

Большие языковые модели (LLM) предсказывают слова в последовательности, выполняя такие задачи, как резюмирование текста и генерация кода. Галлюцинации в результатах LLM можно свести к минимуму с помощью методов генерации дополнений для поиска (Retrieval Augment Generation, RAG), но оценка достоверности имеет решающее значение.

Соблюдение баланса: Данные и стратегия

Чтобы стать управляемыми данными, организации сталкиваются с проблемами эффективного использования данных, аналитики и искусственного интеллекта. Йенс, эксперт по данным, рассказывает о стратегиях, позволяющих раскрыть весь потенциал данных в различных отраслях.

Взламывая код: Демистификация калибровки моделей

Калибровка обеспечивает соответствие прогнозов модели реальным результатам, повышая надежность. Такие меры оценки, как ожидаемая ошибка калибровки, указывают на недостатки и необходимость новых представлений о калибровке.

Расширение возможностей девочек в области обучения искусственному интеллекту

Тара Чкловски и Аншита Саини из Technovation обсуждают расширение возможностей девочек по всему миру с помощью обучения ИИ, решения реальных задач и инклюзивных инициатив в области ИИ. Узнайте о возможностях наставничества в сезоне 2025 года и технологических достижениях на конференции NVIDIA GTC.

Повышение эффективности обучения графовых нейронных сетей с помощью GraphStorm v0.4

GraphStorm v0.4 от AWS AI представляет интеграцию с DGL-GraphBolt для более быстрого обучения и вывода выводов GNN на крупномасштабных графах. Структура графа fCSC GraphBolt позволяет сократить затраты памяти до 56 %, что повышает производительность в распределенных системах.

Компании, занимающиеся разработкой искусственного интеллекта, получили преимущество в консультациях по законодательству об авторском праве Великобритании

Бибан Кидрон предупреждает, что изменения в законе об авторском праве Великобритании благоприятствуют ИИ, а не творческим индустриям, что ведет к передаче богатства технологическому сектору. Правительство рискует подорвать программу роста, предлагая обучать искусственный интеллект творческим работам.

Великобритания и США пропустили декларацию о безопасности ИИ на саммите в Париже

Джей Ди Вэнс обсуждает огромный потенциал искусственного интеллекта для экономических инноваций и национальной безопасности, подчеркивая необходимость дерегулирования для его быстрого развития. Он подчеркивает важность использования возможностей ИИ и использования потенциала технологии для создания рабочих мест и развития общества.

Скоростные соревнования: Поляры против Панд

Скорость обработки данных в облачных хранилищах данных имеет решающее значение: она влияет на затраты, своевременность данных и циклы обратной связи. Сравнительный тест скорости между Polars и Pandas призван проверить заявления о производительности и обеспечить прозрачность для потенциальных пользователей инструментов.

Освоение регрессии в машинном обучении: Сравнение лучших методик

Основные методы регрессии включают линейную, k-Nearest Neighbors, Kernel Ridge, Gaussian Ridge, Neural Network, Random Forest, AdaBoost и Gradient Boosting. Эффективность каждого метода зависит от размера и сложности набора данных.