Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій.

Ефективна класифікація документів за допомогою моделі Amazon Titan

Дізнайтеся, як компанія XYZ здійснила революцію в технологічній індустрії завдяки своїй революційній технології штучного інтелекту. Дізнайтеся, як їхній інноваційний продукт перевернув ринок і встановив нові стандарти ефективності та продуктивності.

Магія науки про дані: Визначення місцезнаходження терористів

Нове захоплююче дослідження розкриває революційну технологію штучного інтелекту, розроблену компаніями Google і Tesla. Інноваційне програмне забезпечення обіцяє зробити революцію в автомобільній промисловості.

Автоматизуйте анотації зображень за допомогою AWS для активного навчання

Відкрийте для себе революційні дослідження компанії XYZ щодо нових методів лікування раку з використанням нанотехнологій. Їхній інноваційний підхід показує багатообіцяючі результати в ефективному націлюванні на пухлинні клітини.

SafeChat: Покращення відповідей чат-бота зі штучним інтелектом

Дізнайтеся, як компанія X зробила революцію в технологічній галузі завдяки своїй революційній технології штучного інтелекту, встановивши новий стандарт інновацій. Дізнайтеся про вплив їхнього продукту на бізнес по всьому світу.

Персоналізовані стратегії лікування з урахуванням результатів навчання

Дізнайтеся, як остання модель iPhone від Apple революціонізувала фотографію на смартфонах завдяки вдосконаленим функціям камери. Дослідіть вплив нової технології безпілотного водіння Tesla на майбутнє транспорту.

Пробудження бактерій: ШІ націлений на стійкі штами

Відкрийте для себе новітні революційні технології, розроблені компанією Tesla для своєї нової моделі електромобіля. Дізнайтеся, як ця інновація зробить революцію в автомобільній індустрії.

Опановуємо навчання з підкріпленням: Комплексний посібник

Дізнайтеся, як компанія XYZ зробила революцію в технологічній індустрії завдяки своїй революційній технології штучного інтелекту. Дізнайтеся, як їхній продукт змінює спосіб ведення бізнесу в усьому світі.

Презентація "Островів міської спеки" на Gramener з Amazon SageMaker

Дізнайтеся про новаторську співпрацю між Tesla та SpaceX, яка зробила революцію в електромобілях та космічних дослідженнях. Відкрийте для себе останні інновації у сфері сталої енергетики та міжпланетних подорожей.

Покращення модерації контенту за допомогою Amazon Rekognition

Дізнайтеся про новаторську співпрацю між Tesla та SpaceX, яка зробила революцію в електромобілях та космічних подорожах. Дізнайтеся, як їхні інноваційні технології формують майбутнє транспорту.

Nielsen Sports скорочує витрати на відеоаналіз за допомогою Amazon SageMaker

Дізнайтеся, як нова технологія безпілотного водіння Tesla революціонізує автомобільну індустрію. Завдяки вдосконаленим алгоритмам штучного інтелекту та найсучаснішим датчикам Tesla прокладає шлях до автономних транспортних засобів.

Стратегічне навчання PAC

Відкрийте для себе останній прорив у технології штучного інтелекту з запуском Neuralink від Ілона Маска. Революційний інтерфейс між мозком і машиною обіцяє об'єднати людський і штучний інтелект.

Текстильний хаос

Нове дослідження розкриває революційну технологію штучного інтелекту, розроблену Google, яка змінює майбутнє аналізу даних. Компанії по всьому світу намагаються впровадити цю інновацію, що змінює правила гри.

Освоєння кластеризації даних за допомогою самоорганізуючих карт на JavaScript

Відкрийте для себе новітні революційні технології, розроблені компанією Tesla, які зробили революцію в індустрії електромобілів. Дізнайтеся, як їхні інноваційні функції автономного водіння встановлюють нові стандарти автомобільної безпеки та зручності.

Опановуємо машинне навчання за допомогою Amazon SageMaker

Дізнайтеся про новаторську співпрацю між Tesla та SpaceX, спрямовану на створення сталих енергетичних рішень для космічних подорожей. Бачення Ілона Маска про повністю стійку колонію на Марсі близьке до реальності, як ніколи раніше.

Розкриття можливостей великих мовних моделей для маркування даних

Дізнайтеся, як остання модель iPhone від Apple революціонізує мобільну фотографію завдяки своїй передовій технології камери. Вивчіть революційні функції нового оновлення iOS, яке обіцяє покращити користувацький досвід.

Сонячні моделі тепер в Amazon SageMaker

Відкрийте для себе останній прорив у технології штучного інтелекту, представивши революційний новий продукт компанії XYZ. Ця інновація, що змінює правила гри, переосмислить галузеві стандарти та революціонізує спосіб нашої взаємодії з машинами.

Оптимізація доступу за допомогою AWS IAM для Amazon SageMaker Canvas

Дізнайтеся, як компанія Х зробила революцію в технологічній індустрії завдяки своєму революційному продукту, що призвело до різкого зростання продажів і домінування на ринку. Дізнайтеся, як інноваційний підхід до технології штучного інтелекту виділив їх серед конкурентів і вивів на лідируючі позиції в галузі.

AI Aid: Оптимізація реагування на гуманітарні кризи

Дізнайтеся, як компанія Х зробила революцію в галузі завдяки своєму революційному продукту, що призвело до різкого зростання прибутків і задоволеності клієнтів. Дізнайтеся про інноваційні технології, що стоять за їхнім успіхом, і про те, як вони формують майбутнє ринку.

Освоєння RAG-патернів у SageMaker

Дізнайтеся, як компанія Х зробила революцію в галузі, створивши революційний продукт, продемонструвавши передові технології. Дізнайтеся, як їхній інноваційний підхід встановив новий стандарт для конкурентів на ринку.

Середній vs Центроїд: Розпакування ключових відмінностей

Дізнайтеся, як компанія XYZ зробила революцію в технологічній індустрії завдяки своїй революційній технології штучного інтелекту. Дізнайтеся, як їхній продукт перевершив конкурентів, що призвело до стрімкого панування на ринку.

Розшифровка категоріальних кодерів: Вичерпний посібник

Дізнайтеся про новаторську співпрацю між Tesla та SpaceX у розробці нових рішень для сталої енергетики. Дізнайтеся, як їхні інноваційні технології революціонізують спосіб, у який ми живимо наш світ.

Алгоритм Массачусетського технологічного інституту прогнозує екстремальні погодні умови

Відкрийте для себе останній прорив у технології штучного інтелекту від Google, що революціонізує наш спосіб взаємодії з машинами. Дослідіть потенційний вплив на індустрію та повсякденне життя.

Кластеризація SOM: Реалізація на Python

Дізнайтеся, як компанія XYZ зробила революцію в технологічній індустрії завдяки інноваційній технології штучного інтелекту. Дізнайтеся, як їхній продукт зруйнував традиційні бізнес-моделі та встановив нові стандарти.

Як обрати правильну оцінку: Модель проти завдання

Відкрийте для себе останній прорив у технології штучного інтелекту з новим безпілотним автомобілем Tesla. Революційна для автомобільної індустрії, ця інновація обіцяє безпечніший та ефективніший транспорт.

Дослідження особистості за допомогою штучного інтелекту: Створення синтетичних інсайтів

Нове дослідження розкриває революційну технологію штучного інтелекту, розроблену компанією Google, яка революціонізує аналіз даних у галузі охорони здоров'я. Такі компанії, як IBM і Microsoft, інвестують значні кошти в дослідження ШІ, щоб залишатися конкурентоспроможними на ринку.

Декодування GPT2-Small: розуміння передбачень повторюваних токенів

Лінгвістична майстерність ChatGPT вражає дослідників, але його внутрішня робота залишається загадкою. Механістична інтерпретованість проливає світло на передбачення GPT2-Small повторюваних лексем, відкриваючи інтригуюче розуміння механізмів мовної моделі.

"Розширення можливостей промислових операцій за допомогою генеративного ШІ

ШІ та ML революціонізують виробництво, але залишаються проблеми з обробкою величезних неструктурованих даних. Генеративний ШІ, такий як Claude, демократизує доступ до ШІ для малих виробників, підвищуючи продуктивність і швидкість прийняття рішень. Підказки з декількома кадрами покращують точність генерації коду для складних NLQ, підвищуючи можливості FM в розширеній обробці даних для промислов...

"Покращення Code Llama за допомогою SageMaker JumpStart

Meta представляє тонку настройку моделей Code Llama за допомогою Amazon SageMaker JumpStart для підвищення точності та зрозумілості. Code Llama пропонує розширені можливості кодування, підтримує популярні мови програмування та демонструє покращену продуктивність у бенчмарках HumanEval та MBPP.

Дослідники Массачусетського технологічного інституту революціонізували імунотерапію раку за допомогою штучного інтелекту

Дослідники Массачусетського технологічного інституту очолюють команду MATCHMAKERS в рамках проекту Cancer Grand Challenges, що має на меті революціонізувати імунотерапію раку за допомогою штучного інтелекту. Міждисциплінарна команда прогнозуватиме розпізнавання Т-клітин за допомогою лабораторних тестів для персоналізованого лікування, що фінансується The Mark Foundation та іншими.

Розблокування медичних даних: Сила федеративного навчання

За допомогою хмарних сервісів AWS можна здійснити революцію в галузі охорони здоров'я у діагностиці інсульту. Виклики включають в себе ізоляцію даних, проблеми конфіденційності та регуляторні обмеження.

Безпечне федеративне навчання для охорони здоров'я на AWS

Федеративне навчання забезпечує конфіденційність даних у навчанні ML, що має вирішальне значення для регульованих галузей, таких як охорона здоров'я. FedML, Amazon EKS та SageMaker використовували для покращення результатів лікування пацієнтів, одночасно вирішуючи проблеми безпеки даних при прогнозуванні серцевих захворювань.

Зникаюче море: Семантична сегментація за допомогою k-середніх

Побудуйте алгоритм k-середніх на Python з нуля, використовуючи бібліотеки numpy та pandas. Застосуйте його до реальної задачі семантичної сегментації супутникових знімків Аральського моря.

Використання генеративного ШІ на AWS: Кращі практики для створення потужних додатків

Генеративні програми штучного інтелекту, засновані на фундаментальних моделях, створюють бізнес-цінність у клієнтському досвіді та інноваціях. Виклики включають якість вихідних даних, конфіденційність даних і вартість, але такі рішення, як оперативне проектування і RAG, можуть допомогти організаціям використовувати можливості ШІ з AWS Bedrock.

Розкриття можливостей великих мовних моделей у чат-ботах

LLM на базі графічних процесорів NVIDIA дозволяють чат-ботам спілкуватися природно та допомагати у виконанні різних завдань, таких як написання коду та пошук ліків. Їх універсальність та ефективність роблять їх необхідними для таких галузей, як охорона здоров'я, роздрібна торгівля, фінанси тощо, революціонізуючи роботу зі знаннями.

"Представляємо Gemma: останнє доповнення до Amazon SageMaker JumpStart

Захоплюючі новини: Моделі Gemma тепер доступні на Amazon SageMaker JumpStart! Gemma пропонує найсучасніші мовні моделі, що містять до 6 трильйонів токенів. Дізнайтеся про чудову продуктивність Gemma в різних доменах і отримайте доступ до базових моделей у SageMaker для швидкої розробки машинного навчання.

Оптимізація міжоблікового доступу до S3 для ноутбуків SageMaker з точками доступу S3

ШІ та ML трансформують фінанси для виявлення шахрайства, оцінки кредитоспроможності та оптимізації торгівлі. Точки доступу Amazon S3 спрощують безпечний доступ до даних у великих масштабах.

Розплутуючи причинно-наслідкові зв'язки: використання причинно-наслідкових графіків у машинному навчанні

Стаття досліджує інтеграцію причинно-наслідкових міркувань в ML за допомогою причинно-наслідкових графів. Причинні графіки допомагають відокремити причини від кореляцій, що є важливим у причинно-наслідкових висновках. ML не має можливості відповідати на причинно-наслідкові питання через хибні кореляції, плутанину, колайдери та посередники. Структурні причинно-наслідкові моделі (SCM) пропонують...

'Персоналізовані рекомендації щодо продуктів: Успіх VistaPrint з Amazon Personalize

VistaPrint співпрацює з малими підприємствами по всьому світу, використовуючи Amazon Personalize, щоб підвищити коефіцієнт конверсії на 10% і знизити витрати на 30%. Їхня нова хмарна система, що використовує сервіси Twilio Segment і AWS, надає персоналізовані рекомендації щодо продуктів для покращення взаємодії з клієнтами.

Розблокування 3D-розуміння з 2D-зображень за допомогою Sun RGB-D

Отримайте доступ до набору даних Sun RGB-D для розуміння 3D-зображень з 2D-зображень. Набір даних включає сцени в приміщенні з 2D і 3D анотаціями від різних 3D-сканерів. Вивчіть код Python, щоб отримати доступ до цього цінного ресурсу для глибшого розуміння ML.

Покращення периферійного зору ШІ

Дослідники Массачусетського технологічного інституту розробили набір даних для імітації периферійного зору в моделях штучного інтелекту, що покращує розпізнавання об'єктів. Розуміння периферійного зору в машинах може підвищити безпеку водіїв і передбачити поведінку людини, подолавши розрив між ШІ та людським зором.

"Колишнього інженера Google заарештовано за крадіжку комерційної таємниці ШІ

Колишній інженер Google, заарештований за крадіжку комерційної таємниці штучного інтелекту, співпрацював з китайськими компаніями. Ймовірно, копіював детальну інформацію про чіпи GPU і TPU, суперкомп'ютерні системи.

Революція в MLOps з Vertex AI: платформа, що змінює правила гри

Створення масштабованих пайплайнів Kubeflow ML на Vertex AI, "джейлбрейк" готових контейнерів Google. Платформа MLOps спрощує життєвий цикл ML завдяки модульній архітектурі та інтеграції з Google Vertex AI.

Розгадування графових нейронних мереж: Від теорії до реалізації на Pytorch

Графові нейронні мережі (ГНМ) моделюють взаємопов'язані дані, такі як молекулярні структури та соціальні мережі. ГНМ у поєднанні з послідовними моделями створюють просторово-часові ГНМ, що відкривають шлях до глибшого розуміння та інноваційних застосувань у промисловості/дослідженнях.

Революційний аналіз відгуків клієнтів за допомогою Amazon Bedrock

Аліда використала модель Claude Instant від Anthropic на Amazon Bedrock, щоб покращити ствердження теми в 4-6 разів у відповідях на опитування, подолавши обмеження традиційного НЛП. Amazon Bedrock дозволив Аліді швидко створити масштабований сервіс для дослідників ринку, який збирає нюансовані якісні дані, що виходять за рамки запитань з декількома варіантами відповідей.

Революція в тестуванні програмного забезпечення за допомогою генеративного ШІ

Генеративний ШІ створює реалістичні синтетичні дані для різних галузей. Сховище синтетичних даних DataCebo від MIT робить революцію в тестуванні програмного забезпечення та допомагає організаціям приймати обґрунтовані рішення, використовуючи синтетичні дані.

Прискорте розробку ботів Genesys Cloud Amazon Lex

Технології штучного інтелекту та машинного навчання покращують роботу контакт-центрів завдяки ботам самообслуговування, аналітиці дзвінків у реальному часі та пост-аналітиці. Інтеграція Amazon Lex та Genesys Cloud спрощує процес розробки ботів, перетворюючи контакт-центри на центри прибутку.

АІ-код на платформі Hugging Face встановлює бекдори на пристроях користувачів

ШІ-платформа Hugging Face несвідомо розміщувала на комп'ютерах користувачів шкідливе програмне забезпечення, в тому числі бекдори. Дослідники JFrog виявили 100 шкідливих повідомлень, одне з яких надавало повний контроль над віддаленими пристроями.

Покращення користувацького досвіду за допомогою штучного інтелекту: Amazon Personalize та OpenSearch

OpenSearch - це універсальний набір програмного забезпечення з відкритим вихідним кодом для пошуку, аналітики та моніторингу, а Amazon Personalize пропонує складні можливості персоналізації, які не потребують досвіду в галузі ML. Використовуючи ці технології для покращення релевантності пошуку та генерації персоналізованих рекомендацій, компанії можуть підвищити рівень залучення користувачів і...

Автоматизація конвеєрів Amazon SageMaker: Оптимізуйте робочий процес машинного навчання

Автоматизуйте робочі процеси ML за допомогою динамічного фреймворку для Amazon SageMaker Pipelines, що забезпечує відтворюваність, масштабованість і гнучкість. Інтеграція з реєстром моделей покращує управління моделями для відстеження версій та впевненого запуску у виробництво.

Освоєння PCA з SVD на C#

Відкрийте для себе можливості аналізу головних компонент (PCA) за допомогою декомпозиції сингулярних значень (SVD) у C#. Перетворюйте набори даних для візуалізації або прогнозування, використовуючи лише дев'ять елементів даних. PCA є ключовою технікою для зменшення розмірності та аналізу даних, що застосовується в машинному навчанні та виявленні аномалій.

Навігація в умовах невизначеності: Байєсівський підхід

Тамара Бродерік, викладач Массачусетського технологічного інституту, використовує байєсівський висновок для кількісної оцінки невизначеності в методах аналізу даних. Співпрацюючи в різних галузях, вона допомагає розробляти такі інструменти, як модель машинного навчання для океанських течій та інструмент для людей з обмеженими руховими можливостями.

Революція в галузі штучного інтелекту в Deutsche Bahn за допомогою Amazon SageMaker Studio

Проблеми платформи штучного інтелекту у великих організаціях включають дотримання нормативних вимог, безпеку та масштабованість. Deutsche Bahn використовує Amazon SageMaker Studio для проектів зі штучного інтелекту, завдяки таким перевагам, як співпраця, масштабованість та економічна ефективність.

Прискорення ML за допомогою Amazon SageMaker: Історія успіху Axfood

Axfood AB, другий за величиною рітейлер продуктів харчування у Швеції, у партнерстві з AWS створив прототип нової найкращої практики MLOps для ефективних моделей ML. Вони покращили масштабованість та ефективність, співпрацюючи з експертами AWS та використовуючи Amazon SageMaker, зосередившись на прогнозуванні продажів фруктів та овочів, щоб оптимізувати рівень запасів у магазині та мінімізуват...

Розблокування швидкого пошуку найближчих сусідів: Історія HNSW

Дослідіть складний, але ефективний підхід ієрархічного навігаційного малого світу (HNSW) для швидкого пошуку найближчого сусіда. Пориньте в історію та тонкощі HNSW, щоб зрозуміти його високошвидкісні можливості.

 Розшифровка помилок машинного навчання

Пастки машинного навчання: надмірне налаштування, оманливі дані, приховані змінні. Приклади включають невдалі моделі прогнозування Covid та систему якості води. Контрольний список REFORMS запроваджено для запобігання помилкам у науці на основі ML.

Розкриття можливостей прямої оптимізації переваг

У статті "Пряма оптимізація преференцій" представлено новий спосіб точного налаштування фундаментальних моделей, що призводить до вражаючого зростання продуктивності з меншою кількістю параметрів. Цей метод замінює потребу в окремій моделі винагороди, революціонізуючи спосіб оптимізації LLM.

 Оптимізація виявлення аномалій у виробничих даних за допомогою Amazon SageMaker Canvas

Amazon SageMaker Canvas дозволяє експертам у галузі створювати потужні аналітичні та ML-моделі без кодування. Це допомагає виявляти аномальні точки даних у промислових машинах, що має вирішальне значення для прогнозованого обслуговування та підвищення продуктивності.

Опановуємо причинно-наслідковий висновок: Безкоштовний посібник для самонавчання

У сучасному світі, що ґрунтується на даних, вміння робити причинно-наслідкові висновки має вирішальне значення, а Google Trends демонструє зростаючий інтерес до нього. Опануйте цю цінну навичку за допомогою посібника для самонавчання, який підходить для всіх рівнів і професій.

Побудова самоорганізуючої кластеризації карт на C# для аналізу даних

Основні моменти статті: Кластеризація за методом K-середніх є поширеною, але також використовуються інші методи, такі як DBSCAN, модель гауссової суміші та спектральна кластеризація. Кластеризація на основі самоорганізаційних карт (SOM) створює кластери на основі схожості. Реалізація на C# з використанням набору даних Penguin показує результати кластеризації.

 Діаризація зі штучним інтелектом: Революція в локалізації від ZOO Digital

ZOO Digital революціонізує локалізацію контенту завдяки автоматизованій діалогізації за допомогою Amazon SageMaker, скорочуючи ручну працю та час. Компанія ZOO Digital, якій довіряють провідні представники індустрії розваг, прагне здійснювати локалізацію менш ніж за 30 хвилин завдяки масштабованим моделям машинного навчання.

 Ефективний та економічно вигідний ML-висновок за допомогою Amazon SageMaker MME

Amazon SageMaker MME дозволяють динамічно розподіляти обчислювальні ресурси для моделей, заощаджуючи витрати та оптимізуючи ефективність. DJLServing дозволяє масштабувати кожну модель для MME, що не залежать від структури трафіку.

Meta's Code Llama 70B: розгортання в один клік за допомогою Amazon SageMaker JumpStart

Фундаментальні моделі Code Llama від Meta, доступні на Amazon SageMaker JumpStart, пропонують найсучасніші можливості великої мови для генерації коду та природної мови про код. Моделі доступні у трьох варіантах, з параметрами до 70B, призначені для підвищення продуктивності розробників на різних мовах програмування. SageMaker JumpStart надає доступ до низки базових моделей для швидкого розгорт...

Відкрийте для себе Code Llama 70B у SageMaker JumpStart

Фундаментальні моделі Code Llama від Meta, доступні на Amazon SageMaker JumpStart, пропонують найсучасніші моделі великих мов для генерації коду та підказок природною мовою. Code Llama поставляється в трьох варіантах і різних розмірах, навчений на мільярдах токенів, забезпечуючи стабільні покоління з до 100 000 токенів контексту. SageMaker JumpStart пропонує доступ до низки базових моделей, вк...

Використання можливостей Amazon SageMaker Canvas для виявлення виробничих аномалій

Amazon SageMaker Canvas надає безкодовий інтерфейс для експертів у галузі для створення потужної аналітики та моделей машинного навчання, вирішуючи дилему набору навичок у прийнятті рішень на основі даних. У цій статті демонструється, як SageMaker Canvas можна використовувати для виявлення аномалій у виробничій галузі, допомагаючи виявляти несправності або незвичні операції промислових машин.

Революційні експерименти з ML: Подорож Booking.com з Amazon SageMaker

Booking.com співпрацював з AWS Professional Services для використання Amazon SageMaker і модернізації своєї інфраструктури ML, скоротивши час очікування на навчання моделей і експерименти, інтегрувавши основні можливості ML і скоротивши цикл розробки моделей ML. Це покращило їхній досвід пошуку та принесло користь мільйонам мандрівників по всьому світу.

Розкриття потенціалу PCA: спрощення аналізу даних та машинного навчання за допомогою C#

У статті "Аналіз головних компонент (PCA) з нуля за допомогою класичної техніки на C#" у журналі Microsoft Visual Studio Magazine пояснюється, як PCA може зменшити кількість стовпців у наборі даних та його застосування в алгоритмах машинного навчання. У статті також обговорюються труднощі обчислення власних значень і власних векторів і наводиться демонстрація на прикладі підмножини набору дани...

Зламуючи код: Основні техніки кодування в машинному навчанні

У цій статті розглядаються три ключові методи кодування для машинного навчання: кодування міток, одночасне кодування та цільове кодування. Вона містить зручний для початківців посібник з перевагами, недоліками та прикладами коду на Python, який допоможе аналітикам даних зрозуміти та ефективно впровадити ці методи.

Автоматизація виявлення шахрайства з іпотечними документами за допомогою детектора шахрайства ML та Amazon

Автоматизуйте виявлення шахрайства в іпотечних документах за допомогою ML-моделей і правил, визначених бізнесом, за допомогою Amazon Fraud Detector, повністю керованого сервісу виявлення шахрайства. Завантажуйте історичні дані, навчайте модель, перевіряйте ефективність і розгортайте API для прогнозування, щоб покращити виявлення шахрайства та точність андеррайтингу.

Автоматизація виявлення несприятливих подій: Використання великих мовних моделей на Amazon SageMaker

У 2021 році фармацевтична промисловість згенерувала 550 мільярдів доларів доходу в США, а до 2022 року прогнозовані витрати на діяльність з фармаконагляду становитимуть 384 мільярди доларів. Для вирішення проблем моніторингу небажаних явищ розроблено рішення на основі машинного навчання з використанням Amazon SageMaker та моделі BioBERT від Hugging Face, що забезпечує автоматизоване виявлення ...

MIT-Pillar AI Collective: Розширення можливостей інноваторів у галузі штучного інтелекту та науки про дані для комерціалізації

MIT-Pillar AI Collective оголошує шість стипендіатів на весну 2024 року, щоб підтримати аспірантів, які проводять дослідження в галузі штучного інтелекту, машинного навчання та науки про дані для комерціалізації своїх інновацій. Серед стипендіатів - Ясмін Аль-Фарадж (Yasmeen AlFaraj), яка працює над стійкими пластмасами, та Рубен Кастро Орнелас (Ruben Castro Ornelas), який розробляє багатоціль...

ШІ: потужне рішення для боротьби зі зміною клімату

У новому дослідженні ITIF закликає уряди впроваджувати штучний інтелект для підвищення енергоефективності в різних галузях промисловості, наводячи такі приклади, як використання фермерами штучного інтелекту для зменшення використання добрив і води, а заводами - для підвищення енергоефективності. Автор дослідження підкреслює необхідність того, щоб політики не стримували корисне використання ШІ,...

Вивільнення сили симетрії в машинному навчанні

Аспірант Массачусетського технологічного інституту Бехруз Тахмасебі (Behrooz Tahmasebi) та його науковий керівник Стефані Єгелка (Stefanie Jegelka) модифікували закон Вейля, щоб врахувати симетрію при оцінці складності даних, що потенційно може покращити машинне навчання. Їхня робота, представлена на конференції "Нейронні системи обробки інформації", демонструє, що моделі, які задовольняють си...

Усунення діагностичних диспропорцій: Лікарі борються за діагностику шкірних захворювань у темношкірих людей

Лікарі мають нижчу точність у діагностиці шкірних захворювань на темній шкірі: дерматологи точно характеризують лише 34% зображень порівняно з 38% для світлої шкіри. Алгоритми штучного інтелекту можуть підвищити точність, але така диспропорція свідчить про необхідність змін в освіті та підготовці дерматологів.

Геопросторова аналітика: Запобігання поширенню зоонозів за допомогою SageMaker

HSR.health використовує геопросторові можливості Amazon SageMaker для створення інструменту, який надає точну інформацію про поширення хвороб з метою запобігання спалахам зоонозів до того, як вони стануть глобальними. Індекс ризику використовує понад 20 факторів для оцінки взаємодії людини і дикої природи, а для аналізу даних застосовує супутникові знімки та дистанційне зондування.

Вивільнення потужності генеративного ШІ: представлення моделей Llama 2 і Mistral в Amazon SageMaker Canvas

Amazon SageMaker Canvas, запущений у 2021 році, пропонує безкодовий підхід до побудови та розгортання моделей машинного навчання. Останні оновлення представляють нові можливості генеративного ШІ, включаючи підтримку моделей Meta Llama 2 і Mistral.AI, що полегшує користувачам використання можливостей ШІ без написання коду.

Розкриваємо цінність вашої команди з обробки даних: Піраміда рентабельності інвестицій в дані

Дізнайтеся, як розрахувати рентабельність інвестицій вашої команди з обробки даних (ROI) за допомогою піраміди ROI Data ROI Pyramid, яка фокусується на визначенні цінності ініціатив команди з обробки даних, таких як дашборди відтоку клієнтів та ініціативи з якості даних. Піраміда також підкреслює, що скорочення часу простою даних є ключовою стратегією для збільшення ROI.

Розкриття потенціалу штучного інтелекту: Швидка та безпечна підготовка даних за допомогою SageMaker Canvas

Дані мають вирішальне значення для максимізації цінності штучного інтелекту та ефективного вирішення бізнес-проблем. Amazon SageMaker Canvas революціонізує підготовку даних для аналітиків з безпеки, дозволяючи їм без зусиль отримувати доступ до фундаментальних моделей, витягувати цінність і виправляти ризики кібербезпеки.

Створення відмовостійких генеративних робочих навантажень ШІ: Міркування та найкращі практики

Стійкість має вирішальне значення для робочих навантажень генеративного ШІ, щоб відповідати вимогам доступності та безперервності бізнесу. Рішення генеративного ШІ передбачають нові ролі, інструменти та міркування, такі як швидка перевірка та конвеєри даних.

Розкриття потенціалу текстових вбудовувань Amazon Titan: Революціонізуйте свої програми NLP та ML

Amazon Titan Text Embeddings - це модель вбудовування тексту, яка перетворює текст природною мовою в числові представлення для пошуку, персоналізації та кластеризації. Вона використовує алгоритми вбудовування слів і великі мовні моделі для фіксації семантичних зв'язків і покращення подальших завдань NLP.

Виявлення підробки зображень у масштабі: Побудова моделі комп'ютерного зору на Amazon SageMaker

Автоматизуйте виявлення підробки документів та шахрайства в масштабах за допомогою сервісів AWS AI та машинного навчання для андеррайтингу іпотечних кредитів. Розробити модель комп'ютерного зору на основі глибокого навчання для виявлення та виділення підроблених зображень в іпотечному андеррайтингу за допомогою Amazon SageMaker.

Сила Адама: розкриваємо математику, що стоїть за найпопулярнішим оптимізатором глибокого навчання

У статті досліджується математична основа оптимізатора Adam і пояснюється, чому він є найпопулярнішим оптимізатором у глибокому навчанні. Вона заглиблюється в механіку роботи Адама, висвітлюючи його адаптивну швидкість навчання та здатність регулювати розмір кроку залежно від складності даних.

Розблокування аналізу часових рядів: Освоєння Facebook Prophet для точних прогнозів

Ця стаття містить практичний посібник з використання Facebook Prophet для аналізу часових рядів, спрямований на усунення бар'єрів для входу на ринок. Prophet - це інструмент з відкритим вихідним кодом від Facebook, який з легкістю створює точні прогнози часових рядів, що робить його ідеальним для бізнес-додатків.

Розблокування продуктивності: Бенчмаркінг та оптимізація розгортання кінцевих точок в Amazon SageMaker JumpStart

У цій статті досліджується складний взаємозв'язок між затримкою та пропускною здатністю при розгортанні великих мовних моделей (LLM) за допомогою Amazon SageMaker JumpStart. Бенчмаркінг LLM, таких як Llama 2, Falcon і Mistral, показує вплив архітектури моделі, конфігурації обслуговування, типу апаратного забезпечення екземплярів і паралельних запитів на продуктивність.

Від авіації до штучного інтелекту: застосування стандартів безпеки для охорони здоров'я

Ризик смертності в авіації становить 0,11, що робить її одним з найбезпечніших видів транспорту. Вчені Массачусетського технологічного інституту розглядають авіацію як модель для регулювання ШІ в охороні здоров'я, щоб гарантувати, що маргіналізовані пацієнти не постраждають від упереджених моделей ШІ.

Відкриваємо "чорну скриньку": ШІ в охороні здоров'я та схвалення FDA

У Клініці машинного навчання в охороні здоров'я ім. Абдула Латіфа Джаміля при Массачусетському технологічному інституті обговорили, чи потрібно повністю пояснювати "чорний ящик" процесу прийняття рішень щодо моделей ШІ для схвалення FDA. На заході також наголошувалося на необхідності освіти, доступності даних і співпраці між регуляторними органами та медичними працівниками у регулюванні ШІ в о...

Революція у сфері сталих інновацій: Подорож компанії Atacama Biomaterials

Atacama Biomaterials, стартап, що поєднує архітектуру, машинне навчання та хімічну інженерію, розробляє екологічно чисті матеріали з різними сферами застосування. Їхні технології дозволяють створювати бібліотеки даних і матеріалів за допомогою штучного інтелекту та машинного навчання, виробляючи компостовані пластмаси та пакування з регіональних джерел.

Розкриття потенціалу GPT-1: глибоке занурення в першу версію революційної мовної моделі

У 2017 році Google Brain представив Transformer - гнучку архітектуру, яка перевершила існуючі підходи до глибокого навчання, і тепер використовується в таких моделях, як BERT і GPT. GPT, модель декодера, використовує завдання мовного моделювання для генерації нових послідовностей і дотримується двоетапної схеми попереднього навчання та точного налаштування.

Захист генеративного ШІ: архітектура глибокого захисту для додатків LLM

Програми генеративного штучного інтелекту, що використовують великі мовні моделі (LLM), мають економічну цінність, але управління безпекою, конфіденційністю та дотриманням нормативних вимог має вирішальне значення. Ця стаття містить рекомендації щодо усунення вразливостей, впровадження найкращих практик безпеки та побудови стратегій управління ризиками для додатків генеративного ШІ.

Розкладання сингулярних значень (SVD) стало простим: Рефакторинг алгоритму Якобі в Python

У статті обговорюється алгоритм розкладання сингулярних значень (SVD) та авторський процес рефакторингу алгоритму Якобі з Наукової бібліотеки GNU на Python/NumPy. Автор перевіряє свою функцію SVD з нуля за допомогою функції np.linalg.svd() і підкреслює корисність SVD в класичній статистиці та машинному навчанні.

Викриття галюцинацій LLM: Метрики для виявлення правдивості у відповідях на запитання

У цій статті досліджується актуальна тема галюцинацій LLM у дослідженнях ШІ, висвітлюються значні наслідки помилок або брехні, спричинених великими мовними моделями. У ній обговорюються метрики для виявлення та вимірювання галюцинацій у робочих процесах відповіді на запитання з точністю 90% для закритої області та 70% для відкритої області.

Виявлення прихованих закономірностей: Реалізація спектральної кластеризації з нуля на Python

Спектральна кластеризація, складна форма машинного навчання, перетворює дані у форму зі зменшеною розмірністю та застосовує кластеризацію за методом k-середніх. Реалізація спектральної кластеризації з нуля на Python була складним завданням, але результати виявилися ідентичними модулю scikit-learn, причому найскладнішою частиною було обчислення власних значень і власних векторів нормалізованої ...

Оптимізація перевірки щеплень за допомогою Amazon Textract: покроковий посібник

Amazon Textract - це ML-сервіс, який з високою точністю витягує текст і дані зі сканованих документів, автоматизуючи обробку документів для різних цілей. Він пропонує рішення для спрощення перевірки статусу вакцинації, надаючи точну інформацію з карток щеплень за допомогою запитів Amazon Textract Queries.

Розкриваємо секрети ШНМ: Математичні основи та реалізація на Python

Поява таких інструментів, як AutoAI, може зменшити важливість традиційних навичок машинного навчання, але глибоке розуміння основних принципів ML все одно буде затребуваним. У цій статті розглядаються математичні основи рекурентних нейронних мереж (RNN) та досліджується їх використання для виявлення послідовних закономірностей у часових рядах даних.

Boosting BERT: прискорення часу виведення за допомогою пошуку нейронної архітектури та автоматизованого налаштування моделі SageMaker

Ця стаття демонструє, як пошук нейронної архітектури може бути використаний для стиснення точно налаштованої BERT-моделі, покращуючи продуктивність і скорочуючи час виведення. Застосовуючи структурне обрізання, можна зменшити розмір і складність моделі, що призведе до швидшого часу відгуку і підвищення ефективності використання ресурсів.

Розкриття потенціалу машинного навчання PySpark

Spark ML - це бібліотека з відкритим вихідним кодом для високопродуктивного зберігання даних і класичних алгоритмів машинного навчання. У статті демонструється демонстраційна версія PySpark, яка прогнозує політичні симпатії за допомогою синтетичного набору даних, висвітлюється використання даних Spark та процес встановлення.

Розкриття потенціалу генеративного ШІ: генерація синтетичних даних за допомогою GAN

Генеративні змагальні мережі (GAN) зробили революцію в ШІ, генеруючи реалістичні зображення і мовні моделі, але їхнє розуміння може бути складним. Ця стаття спрощує GAN, зосереджуючись на генеруванні синтетичних даних математичних функцій, і пояснює різницю між дискримінативними та генеративними моделями, які складають основу GAN.

Розкриття можливостей графічного та геометричного ML: ідеї та інновації на 2024 рік

У цій статті автори обговорюють теорію та архітектуру графових нейронних мереж (ГНМ) і висвітлюють появу графових трансформаторів як тенденцію в графовому МН. Вони досліджують зв'язок між ГНМ і трансформаторами, показуючи, що ГНМ з віртуальним вузлом може імітувати трансформатор, і обговорюють переваги та обмеження цих архітектур з точки зору виразності.

Досягнення в графічному та геометричному ML: застосування та прориви у 2024 році

У 2023 році домінували геометричні методи та програми ML, а також помітні прориви в структурній біології, включаючи відкриття двох нових антибіотиків за допомогою GNN. Зростає тенденція до конвергенції методів ML та експериментальних методів в автономному відкритті молекул, а також використання Flow Matching для швидшого та детермінованого відбору зразків.

Розкриття потенціалу великих аналітиків даних: 6 навичок для неймовірної ефективності

Розвиток правильних навичок є ключовим для того, щоб стати чудовим аналітиком даних, включаючи вільне володіння мовою SQL, основи статистики та глибокі знання предметної області. Ці навички дозволяють аналітикам знаходити креативні рішення, ефективно виконувати якісну роботу та виявляти цінні інсайти.

Розкриття потенціалу текстових вбудовувань: Трансформація фінансових пошукових додатків за допомогою Amazon Bedrock Cohere

Підприємства можуть використовувати текстові вставки, створені за допомогою машинного навчання, для аналізу неструктурованих даних і вилучення інсайтів. Багатомовна модель вбудовування Cohere, доступна на Amazon Bedrock, пропонує покращену якість документів, пошук для додатків RAG та економічно ефективне стиснення даних.

Розкрийте потенціал LDA: Практичний посібник з ефективного тематичного моделювання

Відкрийте для себе можливості латентного розподілу Діріхле (LDA) для ефективного моделювання тем у машинному навчанні та науці про дані. Дізнайтеся, як LDA можна застосовувати не лише до текстових даних, наприклад, в інтернет-магазинах та аналізі кліків, і як його можна інтегрувати з іншими імовірнісними моделями для персоналізованих рекомендацій.

Революція в гольфі: хмарне відстеження м'яча виводить PGA TOUR на нові висоти

PGA TOUR розробляє систему відстеження положення м'яча наступного покоління, яка використовує комп'ютерний зір і методи машинного навчання для визначення місцезнаходження м'ячів для гольфу на паттінг-гріні. Система, розроблена Інноваційним центром Amazon Generative AI, успішно відстежує положення м'яча та прогнозує координати його спокою.

Оптимізація робочого процесу затвердження та просування моделі ВК за участю людини

У цій статті розглядається масштабована платформа MLOps, яка автоматизує робочий процес затвердження та просування ML-моделей за допомогою таких сервісів AWS, як Lambda, API Gateway, EventBridge і SageMaker. Рішення включає в себе етап втручання людини для затвердження моделі перед переходом на наступний рівень середовища.

OpenAI Reveals: Моделі ШІ неможливі без захищених авторським правом матеріалів

OpenAI визнала необхідність використання захищених авторським правом матеріалів при розробці таких інструментів ШІ, як ChatGPT, заявивши, що без цього було б "неможливо". Практика вилучення контенту без дозволу опинилася під пильною увагою, оскільки такі моделі ШІ, як ChatGPT і DALL-E, покладаються на велику кількість навчальних даних із загальнодоступного Інтернету.

Потокова передача відповіді в реальному часі: Покращення затримки та інтерактивності за допомогою моделей Llama 2 на Amazon SageMaker

Amazon SageMaker тепер підтримує потокову передачу відповідей для висновків у реальному часі, що забезпечує інтерактивний досвід і прискорює час відгуку в генеративних програмах ШІ, таких як чат-боти та віртуальні асистенти. У цій статті пояснюється, як вирішити проблеми затримок і реалізувати рішення за допомогою моделей SageMaker і Llama 2.

Вдосконалення нейронних мереж: Розкриття можливостей абляційного тестування

Основні тези статті: Руйнівне тестування нейронних мереж та архітектур ML для підвищення надійності. Абляційне тестування визначає критичні частини, зменшує складність і підвищує відмовостійкість. Три типи абляційних тестів: нейронне, функціональне та вхідне абляційне тестування.

Розблокування інсайтів: Вилучення тексту з документів за допомогою Amazon Textract

Клієнти AWS у сфері охорони здоров'я, фінансів та державного сектору тепер можуть отримувати цінну інформацію з документів, що зберігаються в Amazon S3, за допомогою інтелектуальної обробки документів (IDP) AWS із сервісами штучного інтелекту, такими як Amazon Textract. Пропонується два рішення: скрипт на Python для швидкої обробки та розгортання під ключ за допомогою AWS CDK для відмовостійко...

Зростання професіоналів у сфері ціннісно-орієнтованих даних у 2024 році

У 2024 році команди, що працюють з даними, зіткнуться з новою реальністю, в якій вони повинні бути орієнтованими на рентабельність інвестицій та ефективними, в той час як фінансування та зростання значно скоротилися за останні роки. Щоб зорієнтуватися в цій ситуації, фахівці з даних повинні шукати зворотний зв'язок із зацікавленими сторонами та визначати сфери для вдосконалення, щоб відповідат...

Оптимізація управління життєвим циклом науки про дані за допомогою AWS та Wipro

Співпраця Wipro з AWS допомагає організаціям долати труднощі в управлінні ізольованими рішеннями в галузі науки про дані, пропонуючи автоматизацію, масштабованість і якість моделей. Впроваджуючи Amazon SageMaker, компанія Wipro вирішує проблеми співпраці, масштабованості, MLOps та повторного використання для своїх клієнтів.

Відкриваємо правду: тестування показників ефективності машинного навчання за допомогою mlscorecheck

У статті розглядається, як за допомогою пакета Python mlscorecheck можна перевірити відповідність результатів машинного навчання та експериментальних налаштувань. Пакет mlscorecheck надає чисельні методи для визначення того, чи можуть отримані результати бути результатом заявленого експерименту.

Виявлення прихованої упередженості: вдосконалення дерев рішень та випадкових лісів

Нещодавнє дослідження вивчає, як дерева рішень і випадкові ліси, що широко використовуються в машинному навчанні, страждають від упередженості через припущення про безперервність ознак. У дослідженні пропонуються прості методи для зменшення цієї похибки, а результати показують погіршення продуктивності на 0,2 відсоткових пункти, коли атрибути відображаються дзеркально.

Демістифікація аналізу головних компонент (PCA) за допомогою C#: Спрощення зменшення розмірності для виявлення аномалій, візуалізації та машинного навчання

Аналіз головних компонент (PCA) - це складний метод, який використовується для зменшення розмірності, з двома основними методами: класичним та некласичним. У статті обговорюються проблеми реалізації PCA за допомогою класичного методу і демонструється реалізація на C# на підмножині набору даних Iris.

Реалізація методу ArgSort() в C#: Сортування масивів та списків з легкістю

У статті демонструється реалізація функції ArgSort() мовою C# з прикладами коду як для масивів, так і для списків. Підкреслюється наявність перевантаження C# Array.Sort(a,b), яке дозволяє сортувати на основі значень у масиві.

Представляємо Mixtral-8x7B: розгорніть потужну модель НЛП одним кліком на Amazon SageMaker JumpStart

Велика мовна модель Mixtral-8x7B від Mistral AI тепер доступна на Amazon SageMaker JumpStart для легкого розгортання. Завдяки багатомовній підтримці та чудовій продуктивності Mixtral-8x7B є привабливим вибором для додатків NLP, пропонуючи швидший висновок і нижчі обчислювальні витрати.

Прискорення навчання великих мовних моделей за допомогою Amazon SageMaker

Навчання на великих мовних моделях (LLM) різко зросло в популярності з виходом таких популярних моделей, як Llama 2, Falcon і Mistral, але навчання в такому масштабі може бути складним завданням. Бібліотека паралельних моделей (SMP) Amazon SageMaker спрощує цей процес завдяки новим функціям, зокрема спрощеному користувацькому інтерфейсу, розширеній тензорно-паралельній функціональності та опти...

Революція в контакт-центрах: Використання генеративного ШІ для виняткового клієнтського досвіду

Відмінний клієнтський досвід має вирішальне значення для диференціації бренду та зростання доходів, а 80% компаній планують інвестувати більше в CX. SageMaker Canvas та генеративний ШІ можуть революціонізувати сценарії дзвінків у контакт-центрах, підвищити ефективність, зменшити кількість помилок та покращити підтримку клієнтів.

Представляємо Llama Guard: Захист моделей штучного інтелекту в Amazon SageMaker JumpStart

Модель Llama Guard тепер доступна для Amazon SageMaker JumpStart, забезпечуючи захист вхідних і вихідних даних при розгортанні великих мовних моделей. Llama Guard - це загальнодоступна модель, яка допомагає розробникам захиститися від генерації потенційно ризикованих результатів, полегшуючи впровадження найкращих практик та вдосконалення відкритої екосистеми.

Розкриваємо можливості Amazon SageMaker: Захист ваших даних за допомогою виявлення аномалій

Клієнти стикаються зі зростаючими загрозами безпеці та вразливостями в міру того, як розширюється їхній цифровий слід. Amazon Security Lake та Amazon SageMaker пропонують нове рішення, централізуючи та стандартизуючи дані про безпеку, використовуючи при цьому машинне навчання для виявлення аномалій.

Масштабна оптимізація операцій з машинного навчання за допомогою PwC's Machine Learning Ops Accelerator

Операційний прискорювач машинного навчання PwC в Австралії, побудований на власних сервісах AWS, спрощує процес переходу моделей машинного навчання від розробки до масштабного розгортання. Прискорювач включає сім ключових інтегрованих можливостей, які забезпечують безперервну інтеграцію, безперервну доставку, безперервне навчання та безперервний моніторинг кейсів використання машинного навчання.

Вивільнення інсайтів у реальному часі: MongoDB та SageMaker Canvas революціонізують процес прийняття рішень

У статті досліджуються проблеми, з якими стикаються галузі, що не мають прогнозів у реальному часі, такі як фінанси, роздрібна торгівля, управління ланцюгами поставок та логістика. Вона висвітлює потенціал використання управління даними часових рядів MongoDB та Amazon SageMaker Canvas для подолання цих викликів та прийняття рішень на основі даних.

Хроніки штучного інтелекту: Розгадування хайпу та впливу 2023 року

У 2023 році генеративний штучний інтелект штурмував технологічну індустрію, домінуючи в заголовках новин і викликаючи дискусії. На тлі появи фігур, пов'язаних зі штучним інтелектом, у нетехнічних людей виникає плутанина щодо того, кому довіряти, які продукти зі штучним інтелектом використовувати, і чи становить штучний інтелект загрозу їхньому життю та роботі. Крім того, невпинний темп дослідж...

Виявлення аномалій: Порівняльний аналіз методів виявлення відхилень

У цій статті досліджуються алгоритми виявлення викидів у машинному навчанні та їхнє застосування до статистики бейсбольних подач Головної бейсбольної ліги 2023 року. Порівнюються чотири алгоритми: еліптична оболонка, локальний фактор викидів, однокласова машина опорних векторів зі стохастичним градієнтним спуском та ізоляційний ліс. Мета полягає в тому, щоб отримати уявлення про їхню поведінку...

Розкриття потенціалу ML: Створення рішень без коду за допомогою Amazon DocumentDB та SageMaker Canvas

Amazon оголошує про інтеграцію Amazon DocumentDB з Amazon SageMaker Canvas, що дозволяє користувачам будувати ML-моделі без кодування. Ця інтеграція дозволяє компаніям аналізувати неструктуровані дані, що зберігаються в Amazon DocumentDB, і генерувати прогнози, не покладаючись на команди інженерів даних і фахівців з науки про дані.

Сила експоненціальної ковзної середньої: Розуміння аналізу часових рядів

У цій статті досліджується логіка фундаментального алгоритму, що використовується в градієнтному спуску, зосереджуючись на експоненціальній ковзній середній. Обговорюється мотивація методу, його формула та математична інтерпретація розподілу вагових коефіцієнтів.

Революція в рекомендаціях по роботі: Talent.com оптимізував обробку даних за допомогою Amazon SageMaker

Talent.com співпрацює з AWS для розробки системи рекомендацій щодо роботи з використанням глибокого навчання, яка обробляє 5 мільйонів щоденних записів менш ніж за 1 годину. Система включає в себе розробку функцій, архітектуру моделі глибокого навчання, оптимізацію гіперпараметрів та оцінку моделі, і все це за допомогою Python.

Підвищення ефективності робочого процесу ML: Представляємо простори SageMaker Studio та інструменти генеративного ШІ

Amazon SageMaker Studio тепер пропонує повністю керований редактор коду на основі Code-OSS, а також JupyterLab та RStudio, що дозволяє розробникам ML налаштовувати та масштабувати свої IDE за допомогою гнучких робочих просторів під назвою Spaces. Ці простори забезпечують постійне зберігання даних і конфігурацію часу виконання, підвищуючи ефективність робочого процесу і дозволяючи безперешкодно...

Розкриття можливостей RAG: покращення стабільної дифузійної підказки "текст-зображення

Перетворення тексту в зображення - це швидкозростаюча галузь ШІ, а Stable Diffusion дозволяє користувачам створювати високоякісні зображення за лічені секунди. Використання Retrieval Augmented Generation (RAG) покращує підказки для моделей Stable Diffusion, дозволяючи користувачам створювати власних ШІ-помічників для генерації підказок.

Створіть власний спортзал для АІ: Занурення в глибоке Q-навчання

Пориньте у світ штучного інтелекту - створіть з нуля тренажерний зал для навчання з глибоким підкріпленням. Отримайте практичний досвід і розробіть власний тренажерний зал, щоб навчити агента вирішувати прості завдання, закладаючи фундамент для більш складних середовищ і систем.

Дебати про розвідку: розкриваємо правду про ChatGPT

Новаторська мовна модель штучного інтелекту ChatGPT від OpenAI викликала захоплення своїми вражаючими здібностями, включаючи успішне складання іспитів та гру в шахи. Однак скептики стверджують, що справжній інтелект не слід плутати з запам'ятовуванням, що призвело до наукових досліджень, які вивчають цю різницю і наводять аргументи проти ШІ.

Революція в моніторингу гірничодобувного обладнання за допомогою прототипування AWS і комп'ютерного зору

ICL, міжнародна виробнича та гірничодобувна корпорація, розробила власні можливості з використанням машинного навчання та комп'ютерного зору для автоматичного моніторингу свого гірничодобувного обладнання. За підтримки програми AWS Prototyping вони змогли створити фреймворк на AWS за допомогою Amazon SageMaker для отримання зображень з 30 камер, з потенціалом масштабування до тисяч.

Економне навчання: Ефективне навчання моделей GPT NeoX та Pythia за допомогою AWS Trainium

Великі мовні моделі (LLM), такі як GPT NeoX і Pythia, набувають все більшої популярності завдяки мільярдам параметрів і вражаючій продуктивності. Навчання цих моделей на AWS Trainium є економічно вигідним та ефективним завдяки таким оптимізаціям, як ротаційне позиційне вбудовування (ROPE) та техніка часткового обертання.

Оптимізуйте MLOps за допомогою конвеєрів Amazon SageMaker та дій на GitHub

MLOps має важливе значення для інтеграції моделей машинного навчання в існуючі системи, а Amazon SageMaker пропонує такі функції, як конвеєри та реєстр моделей, щоб спростити цей процес. У цій статті наведено покрокову інструкцію зі створення власних шаблонів проектів, які інтегруються з GitHub та GitHub Actions, що дозволяє ефективно співпрацювати та розгортати моделі машинного навчання.

Запобігання галюцинаціям ШІ: Використання векторної бази даних Pinecone та Llama-2 для розширеної генерації пошукових запитів

Магістри LLM, такі як Llama 2, Flan T5 і Bloom, необхідні для розмовних кейсів використання ШІ, але оновлення їхніх знань вимагає перепідготовки, що займає багато часу і коштує дорого. Однак завдяки Retrieval Augmented Generation (RAG) з використанням Amazon Sagemaker JumpStart і векторної бази даних Pinecone, LLM можна розгортати і підтримувати в актуальному стані відповідну інформацію, щоб з...

Прискорення трансформації TechCo Vodafone: Навички ML з AWS DeepRacer та Accenture

Vodafone трансформується в TechCo до 2025 року, плануючи залучити 50% своєї робочої сили до розробки програмного забезпечення та надавати 60% цифрових послуг власними силами. Щоб підтримати цей перехід, Vodafone уклав партнерство з Accenture та AWS для створення хмарної платформи та взяв участь у конкурсі AWS DeepRacer, щоб покращити свої навички машинного навчання.

Революційна доставка "останньої милі": Оптимізація управління робочою силою за допомогою Amazon Forecast та крокових функцій AWS

Getir, піонер надшвидкої доставки продуктів, впровадив наскрізну систему управління персоналом з використанням Amazon Forecast і AWS Step Functions, що дозволило скоротити час моделювання на 70% і підвищити точність прогнозування на 90%. Цей комплексний проект розраховує потреби в кур'єрах і вирішує проблему розподілу змін, оптимізуючи графіки змін і мінімізуючи кількість пропущених замовлень.

Розкриття можливостей класичних обчислень у нейронних мережах

У цій статті досліджується важливість класичних обчислень у контексті штучного інтелекту, підкреслюється їхня доведена правильність, сильне узагальнення та інтерпретованість порівняно з обмеженнями глибоких нейронних мереж. У ній стверджується, що розробка систем штучного інтелекту з цими класичними обчислювальними навичками має вирішальне значення для створення агентів із загальним інтелектом.

Виявлення прихованих закономірностей: Кластеризація спектральних даних у C#

Спектральна кластеризація - це складна техніка машинного навчання, яка виявляє закономірності в даних. Її реалізація включає в себе обчислення матриць афінності та лапласіанських матриць, власних векторів та виконання кластеризації за методом k-середніх.

Топ відео для перегляду: