В клинике MIT Abdul Latif Jameel Clinic for Machine Learning in Health обсуждался вопрос о том, следует ли полностью объяснять "черный ящик" процесса принятия решений моделями ИИ для получения разрешения FDA. Мероприятие также подчеркнуло необходимость образования, доступности данных и сотрудничества между регулирующими органами и медицинскими специалистами при регулировании ИИ в здравоохранении.
В этой статье рассматриваются методы создания наборов данных тонкой настройки для генерации запросов на языке Cypher из текста с использованием больших языковых моделей (LLM) и предопределенной схемы графа. Автор также упоминает о текущем проекте, целью которого является разработка всеобъемлющего набора данных для тонкой настройки с использованием подхода "человек в цикле".
Риск смертельного исхода в авиации составляет 0,11, что делает ее одним из самых безопасных видов транспорта. Ученые MIT рассматривают авиацию как модель для регулирования ИИ в здравоохранении, чтобы гарантировать, что маргинальные пациенты не пострадают от предвзятых моделей ИИ.
Баланс между исследованием и эксплуатацией: Стратегия приборных панелей для менеджеров по аналитике
Разработчики видеоигр с открытым миром и менеджеры по аналитике сталкиваются с проблемой баланса между исследованием и эксплуатацией. Чтобы решить эту проблему, они могут строить альтернативные пути, предлагать системы управления знаниями, создавать онлайн-сообщества и постоянно вносить улучшения. У продавцов, как и у геймеров, есть основные задачи в виде конкретных показателей, которые они до...
Аспиранты Массачусетского технологического института используют теорию игр для повышения точности и надежности моделей естественного языка, стремясь привести доверие к модели в соответствие с ее точностью. Переосмыслив генерацию языка как игру для двух игроков, они разработали систему, которая поощряет правдивые и надежные ответы, уменьшая при этом количество галлюцинаций.
Лаборатория Improbable AI Lab Массачусетского технологического института разработала мультимодальную систему под названием HiP, которая использует три различные базовые модели, помогающие роботам создавать детальные планы для сложных задач. В отличие от других моделей, HiP не требует доступа к парным данным о зрении, языке и действиях, что делает ее более экономичной и прозрачной.
Стартап Atacama Biomaterials, объединяющий архитектуру, машинное обучение и химическую инженерию, разрабатывает экологически чистые материалы, имеющие множество применений. Их технология позволяет создавать библиотеки данных и материалов с помощью ИИ и ОД, производя региональные, компостируемые пластики и упаковку.
Ученые Массачусетского технологического института разработали две модели машинного обучения - нейронную сеть "PRISM" и модель логистической регрессии - для раннего выявления рака поджелудочной железы. Эти модели превзошли существующие методы, обнаружив 35 % случаев по сравнению со стандартным показателем в 10 %.
В 2017 году Google Brain представил Transformer - гибкую архитектуру, которая превзошла существующие подходы к глубокому обучению и теперь используется в таких моделях, как BERT и GPT. GPT, модель декодера, использует задачу языкового моделирования для генерации новых последовательностей и следует двухэтапной схеме предварительного обучения и тонкой настройки.
В статье обсуждается важность понимания контекстных окон при обучении и использовании трансформеров, особенно с появлением проприетарных LLM и таких техник, как RAG. В ней рассматривается, как различные факторы влияют на максимальную длину контекста, которую может обработать модель трансформатора, и задается вопрос, всегда ли больше - значит лучше.
Разработка приложений для LLM может быть одновременно интересной и сложной задачей, поскольку при этом необходимо учитывать безопасность, производительность и стоимость. Если начать с приложений с низким уровнем риска и придерживаться политики "сначала дешевые LLM", это поможет снизить риски и сократить объем работ, необходимых для запуска.
OpenAI представляет обновления моделей ИИ ChatGPT, устраняя проблему "лени" в GPT-4 Turbo и выпуская новую модель GPT-3.5 Turbo с более низкой ценой. Пользователи сообщали о снижении глубины выполнения заданий в ChatGPT-4, что побудило OpenAI принять ответные меры.
В этой статье рассматриваются ограничения, связанные с использованием больших языковых моделей (LLM) для анализа разговорных данных, и в качестве альтернативы предлагается методология "Рецепты данных". Эта методология позволяет создать библиотеку рецептов данных многократного использования, что улучшает время отклика и позволяет внести свой вклад в развитие сообщества.
Компания OpenAI выпустила простой в использовании веб-инструмент для создания собственных ИИ-помощников без кодирования, для чего требуется только учетная запись Google или Microsoft и подписка OpenAI Plus на 20 долларов в месяц. Пользователи могут персонализировать имя, изображение, тон и стиль взаимодействия своего ИИ-помощника, а также расширить его знания, загрузив определенные документы.
Генеративные приложения ИИ, использующие большие языковые модели (БЯМ), имеют большую экономическую ценность, но управление безопасностью, конфиденциальностью и соответствием нормативным требованиям имеет решающее значение. В этой статье представлены рекомендации по устранению уязвимостей, внедрению передовых методов обеспечения безопасности и разработке стратегий управления рисками для прилож...