Amazon SageMaker JumpStart предлагает предварительно обученные модели и алгоритмы для быстрого обучения и развертывания ML-моделей, включая классификацию текста с помощью Hugging Face. Трансферное обучение позволяет точно настраивать предварительно обученные модели на пользовательских наборах данных для эффективного обучения даже при ограниченном количестве данных.
Специалисты по этике ИИ предупреждают о потенциальном психологическом вреде от «мертвых ботов», воссоздающих умерших людей, и призывают к регулированию. Исследователи Кембриджского университета предполагают, что создание чат-ботов, воссоздающих умерших родственников, может «преследовать» пользователей.
Dialog Axiata борется с высоким уровнем оттока абонентов с помощью инновационной модели прогнозирования оттока абонентов домашнего широкополосного доступа, использующей передовые модели искусственного интеллекта. Стратегическое использование сервисов AWS повышает эффективность работы и приложений AI/ML, что приводит к значительному прогрессу в усилиях по цифровой трансформации.
Генеральный директор NVIDIA призывает использовать достижения ИИ, продемонстрированные в футуристических аватарах на мероприятии ServiceNow в Лас-Вегасе. Аватары на базе передовых технологий ИИ обещают улучшить взаимодействие с клиентами и революционизировать работу предприятий.
PCA используется для снижения размерности и кластеризации станций Taipei MRT на основе данных о почасовом трафике. Анализ моделей движения и кластеризация выявляют сходство в пропорциях пассажиров в течение дня.
Veritone, калифорнийская компания, специализирующаяся на искусственном интеллекте, предлагает мощные ИИ-решения для обработки мультимедиа и не только. Они расширяют возможности поиска медиафайлов с помощью новых методов искусственного интеллекта для улучшения пользовательского опыта.
В сериале Netflix «Круг» (The Circle) появляется чатбот с искусственным интеллектом Макс, вызывая дискуссию о роли ИИ в индустрии развлечений. Макс, прикрывающийся чатботом с искусственным интеллектом, привносит новый поворот в реалити-шоу, поднимая вопросы об использовании ИИ в кино и на телевидении.
Управление модельными рисками (MRM) в финансовой сфере имеет решающее значение для управления рисками, связанными с использованием моделей машинного обучения для принятия решений в финансовых учреждениях. Weight & Biases может повысить прозрачность и скорость рабочего процесса, снизив вероятность значительных финансовых потерь.
Контроль версий необходим как в программной инженерии, так и в машинном обучении, причем версионирование данных и моделей играет важнейшую роль. Он обеспечивает такие преимущества, как прослеживаемость, воспроизводимость, откат, отладка и совместная работа.
Реестр моделей ML: Централизованный центр хранения, каталогизации и развертывания моделей для команд ML, обеспечивающий эффективное сотрудничество и беспрепятственное управление моделями. Weights & Biases Model Registry упрощает разработку, тестирование, развертывание и мониторинг моделей для повышения продуктивности ML-деятельности.
Виртуальные деловые совещания не заставят себя ждать: ожидается, что к 2024 году 41 % из них будут гибридными или виртуальными. Автоматизируйте резюме совещаний с помощью искусственного интеллекта для эффективного сосредоточения и повышения производительности.
Откройте для себя возможности прогнозирования будущего с помощью анализа временных рядов и прогнозирования. Узнайте, как анализировать тенденции данных и делать точные прогнозы с помощью Python и статмоделей.
Meta исследует Federated Learning with Differential Privacy для повышения конфиденциальности пользователей путем обучения ML-моделей на мобильных устройствах, добавляя шум для предотвращения запоминания данных. Проблемы включают балансировку меток и замедленное обучение, но новая архитектура системы Meta направлена на решение этих проблем, позволяя масштабировать и эффективно обучать модели на...
Гиперпараметры в ML существенно влияют на производительность модели. Автоматизированная оптимизация гиперпараметров может повысить эффективность модели.
Graph Maker - это библиотека на языке Python, использующая Llama3 и Mixtral для построения графиков знаний из текста. Библиотека решает сложные задачи и была хорошо принята, а также связана с исследованиями MIT.