Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Створіть власний спортзал для АІ: Занурення в глибоке Q-навчання

Пориньте у світ штучного інтелекту - створіть з нуля тренажерний зал для навчання з глибоким підкріпленням. Отримайте практичний досвід і розробіть власний тренажерний зал, щоб навчити агента вирішувати прості завдання, закладаючи фундамент для більш складних середовищ і систем.

Революція в моніторингу гірничодобувного обладнання за допомогою прототипування AWS і комп'ютерного зору

ICL, міжнародна виробнича та гірничодобувна корпорація, розробила власні можливості з використанням машинного навчання та комп'ютерного зору для автоматичного моніторингу свого гірничодобувного обладнання. За підтримки програми AWS Prototyping вони змогли створити фреймворк на AWS за допомогою Amazon SageMaker для отримання зображень з 30 камер, з потенціалом масштабування до тисяч.

Дебати про розвідку: розкриваємо правду про ChatGPT

Новаторська мовна модель штучного інтелекту ChatGPT від OpenAI викликала захоплення своїми вражаючими здібностями, включаючи успішне складання іспитів та гру в шахи. Однак скептики стверджують, що справжній інтелект не слід плутати з запам'ятовуванням, що призвело до наукових досліджень, які вивчають цю різницю і наводять аргументи проти ШІ.

Розкриття можливостей RAG: покращення стабільної дифузійної підказки "текст-зображення

Перетворення тексту в зображення - це швидкозростаюча галузь ШІ, а Stable Diffusion дозволяє користувачам створювати високоякісні зображення за лічені секунди. Використання Retrieval Augmented Generation (RAG) покращує підказки для моделей Stable Diffusion, дозволяючи користувачам створювати власних ШІ-помічників для генерації підказок.

Підвищення ефективності робочого процесу ML: Представляємо простори SageMaker Studio та інструменти генеративного ШІ

Amazon SageMaker Studio тепер пропонує повністю керований редактор коду на основі Code-OSS, а також JupyterLab та RStudio, що дозволяє розробникам ML налаштовувати та масштабувати свої IDE за допомогою гнучких робочих просторів під назвою Spaces. Ці простори забезпечують постійне зберігання даних і конфігурацію часу виконання, підвищуючи ефективність робочого процесу і дозволяючи безперешкодно...

Революційна доставка "останньої милі": Оптимізація управління робочою силою за допомогою Amazon Forecast та крокових функцій AWS

Getir, піонер надшвидкої доставки продуктів, впровадив наскрізну систему управління персоналом з використанням Amazon Forecast і AWS Step Functions, що дозволило скоротити час моделювання на 70% і підвищити точність прогнозування на 90%. Цей комплексний проект розраховує потреби в кур'єрах і вирішує проблему розподілу змін, оптимізуючи графіки змін і мінімізуючи кількість пропущених замовлень.

Розкриття можливостей спектральної кластеризації: Ефективні методи перетворення власних векторів у кластерні мітки

У статті досліджуються поширені методи кластеризації даних з акцентом на спектральну кластеризацію. Виявлено, що використання k-середніх для обчислення міток кластерів з власних векторів є найкращим підходом, незважаючи на варіації та складнощі.

Вдосконалення інтелектуальних помічників документів на основі RAG: Розкриття аналітичних можливостей за допомогою Amazon Bedrock

Розмовний ШІ розвинувся завдяки генеративному ШІ та великим мовним моделям, але йому бракує спеціалізованих знань для точних відповідей. Retrieval Augmented Generation (RAG) пов'язує загальні моделі з внутрішніми базами знань, що дозволяє створювати помічників ШІ, орієнтованих на конкретну галузь. Amazon Kendra і OpenSearch Service пропонують зрілі векторні пошукові рішення для реалізації RAG,...

Створення інтерактивних веб-інтерфейсів для магістрів за допомогою Amazon SageMaker JumpStart

У статті обговорюється запуск ChatGPT і зростання популярності генеративного ШІ. Висвітлюється створення веб-інтерфейсу під назвою Chat Studio для взаємодії з фундаментальними моделями в Amazon SageMaker JumpStart, включаючи Llama 2 і Stable Diffusion. Це рішення дозволяє користувачам швидко випробувати розмовний ШІ та покращити користувацький досвід завдяки інтеграції з медіа.

Розкриття можливостей великих мовних моделей: Подорож з LM Studio

LM Studio - це інструмент, який дозволяє локально використовувати великі мовні моделі, такі як GPT-x, LLaMA-x та Orca-x, пропонуючи чистий та інтуїтивно зрозумілий інтерфейс для дослідження моделей та виконання завдань на міркування. Однак його творець і потенційні зв'язки з іншими компаніями залишаються незрозумілими.

Революція в доступності: Інноваційний підхід лабораторії SiBORG з OpenUSD та NVIDIA Omniverse

Метью Шварц (Mathew Schwartz), доцент Технологічного інституту Нью-Джерсі, використовує NVIDIA Omniverse та OpenUSD, щоб допомогти дизайнерам вирішити проблему доступності при проектуванні будівель. Команда Шварца розробила код з відкритим вихідним кодом, який генерує складний графік доступності, забезпечуючи зворотній зв'язок з рухами людини та витратами енергії. За допомогою Omniverse дизайн...

Суперечлива функція штучного інтелекту в Dropbox викликає занепокоєння щодо конфіденційності

Dropbox зіткнувся з негативною реакцією після того, як увімкнув налаштування за замовчуванням, яке дозволяє передавати дані користувачів до OpenAI для пошуку за допомогою штучного інтелекту, але запевняє, що дані передаються лише при активному використанні та видаляються протягом 30 днів. Генеральний директор Dropbox Дрю Х'юстон вибачається за плутанину і підкреслює, що жодні дані користувачів...

Економне навчання: Ефективне навчання моделей GPT NeoX та Pythia за допомогою AWS Trainium

Великі мовні моделі (LLM), такі як GPT NeoX і Pythia, набувають все більшої популярності завдяки мільярдам параметрів і вражаючій продуктивності. Навчання цих моделей на AWS Trainium є економічно вигідним та ефективним завдяки таким оптимізаціям, як ротаційне позиційне вбудовування (ROPE) та техніка часткового обертання.

500 ігор та додатків на базі RTX: Революція в ігровій графіці

NVIDIA святкує 500 ігор і додатків з підтримкою RTX, революціонізуючи ігрову графіку та продуктивність. Технології трасування променів і DLSS змінили візуальну точність і підвищили продуктивність у таких іграх, як Cyberpunk 2077 і Minecraft RTX.

Розблокування впливу: Подолання перешкод у проєктах з даними

Проекти збору даних часто не досягають реального впливу через такі макроелементи, як наявність даних, набір навичок, часові рамки, організаційна готовність та політичне середовище. Наявність і доступність відповідних даних має фундаментальне значення, і якщо дані є недосяжними, доцільність проекту слід переглянути.