Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Створіть власний спортзал для АІ: Занурення в глибоке Q-навчання

Пориньте у світ штучного інтелекту - створіть з нуля тренажерний зал для навчання з глибоким підкріпленням. Отримайте практичний досвід і розробіть власний тренажерний зал, щоб навчити агента вирішувати прості завдання, закладаючи фундамент для більш складних середовищ і систем.

Підвищення ефективності робочого процесу ML: Представляємо простори SageMaker Studio та інструменти генеративного ШІ

Amazon SageMaker Studio тепер пропонує повністю керований редактор коду на основі Code-OSS, а також JupyterLab та RStudio, що дозволяє розробникам ML налаштовувати та масштабувати свої IDE за допомогою гнучких робочих просторів під назвою Spaces. Ці простори забезпечують постійне зберігання даних і конфігурацію часу виконання, підвищуючи ефективність робочого процесу і дозволяючи безперешкодно...

Дебати про розвідку: розкриваємо правду про ChatGPT

Новаторська мовна модель штучного інтелекту ChatGPT від OpenAI викликала захоплення своїми вражаючими здібностями, включаючи успішне складання іспитів та гру в шахи. Однак скептики стверджують, що справжній інтелект не слід плутати з запам'ятовуванням, що призвело до наукових досліджень, які вивчають цю різницю і наводять аргументи проти ШІ.

Прискорення трансформації TechCo Vodafone: Навички ML з AWS DeepRacer та Accenture

Vodafone трансформується в TechCo до 2025 року, плануючи залучити 50% своєї робочої сили до розробки програмного забезпечення та надавати 60% цифрових послуг власними силами. Щоб підтримати цей перехід, Vodafone уклав партнерство з Accenture та AWS для створення хмарної платформи та взяв участь у конкурсі AWS DeepRacer, щоб покращити свої навички машинного навчання.

Виявлення прихованих закономірностей: Кластеризація спектральних даних у C#

Спектральна кластеризація - це складна техніка машинного навчання, яка виявляє закономірності в даних. Її реалізація включає в себе обчислення матриць афінності та лапласіанських матриць, власних векторів та виконання кластеризації за методом k-середніх.

Розкриття можливостей спектральної кластеризації: Ефективні методи перетворення власних векторів у кластерні мітки

У статті досліджуються поширені методи кластеризації даних з акцентом на спектральну кластеризацію. Виявлено, що використання k-середніх для обчислення міток кластерів з власних векторів є найкращим підходом, незважаючи на варіації та складнощі.

Створення інтерактивних веб-інтерфейсів для магістрів за допомогою Amazon SageMaker JumpStart

У статті обговорюється запуск ChatGPT і зростання популярності генеративного ШІ. Висвітлюється створення веб-інтерфейсу під назвою Chat Studio для взаємодії з фундаментальними моделями в Amazon SageMaker JumpStart, включаючи Llama 2 і Stable Diffusion. Це рішення дозволяє користувачам швидко випробувати розмовний ШІ та покращити користувацький досвід завдяки інтеграції з медіа.

Від слів до реальності: Зростання покоління "текст - САПР

Розвиток технологій перетворення тексту в зображення на основі штучного інтелекту призвів до появи великої кількості зображень низької якості, що викликало скептицизм і дезорієнтацію. Однак з'явилося нове явище - перетворення тексту в САПР за допомогою ШІ, в якому лідирують такі великі гравці, як Autodesk, Google, OpenAI та NVIDIA.

FTC попереджає про шахрайство з QR-кодами: Захистіть свій смартфон та особисту інформацію

Федеральна торгова комісія США застерігає від шахрайства з використанням QR-кодів, які можуть заволодіти смартфонами, зняти шахрайські платежі або отримати особисту інформацію. Шахраї використовують QR-коди на кіосках для паркування, що призводить до появи сайтів-двійників, які переказують кошти на шахрайські рахунки.

Розблокування впливу: Подолання перешкод у проєктах з даними

Проекти збору даних часто не досягають реального впливу через такі макроелементи, як наявність даних, набір навичок, часові рамки, організаційна готовність та політичне середовище. Наявність і доступність відповідних даних має фундаментальне значення, і якщо дані є недосяжними, доцільність проекту слід переглянути.

Вдосконалення інтелектуальних помічників документів на основі RAG: Розкриття аналітичних можливостей за допомогою Amazon Bedrock

Розмовний ШІ розвинувся завдяки генеративному ШІ та великим мовним моделям, але йому бракує спеціалізованих знань для точних відповідей. Retrieval Augmented Generation (RAG) пов'язує загальні моделі з внутрішніми базами знань, що дозволяє створювати помічників ШІ, орієнтованих на конкретну галузь. Amazon Kendra і OpenSearch Service пропонують зрілі векторні пошукові рішення для реалізації RAG,...

500 ігор та додатків на базі RTX: Революція в ігровій графіці

NVIDIA святкує 500 ігор і додатків з підтримкою RTX, революціонізуючи ігрову графіку та продуктивність. Технології трасування променів і DLSS змінили візуальну точність і підвищили продуктивність у таких іграх, як Cyberpunk 2077 і Minecraft RTX.

NANA: АІ-реєстратор Moonshine Studio революціонізує привітання гостей

3D-художник Moonshine Studio Ерік Чанг (Eric Chiang) створює віртуального асистента на ім'я NANA зі штучним інтелектом, використовуючи можливості GPU-прискорення та відеокарту GeForce RTX 4090. Драйвери NVIDIA Studio тепер підтримують плагін Reallusion iClone AccuFACE та інші вдосконалення, а конкурс #WinterArtChallenge запрошує художників ділитися своїми творіннями на зимову тематику, щоб отр...

Оптимізуйте MLOps за допомогою конвеєрів Amazon SageMaker та дій на GitHub

MLOps має важливе значення для інтеграції моделей машинного навчання в існуючі системи, а Amazon SageMaker пропонує такі функції, як конвеєри та реєстр моделей, щоб спростити цей процес. У цій статті наведено покрокову інструкцію зі створення власних шаблонів проектів, які інтегруються з GitHub та GitHub Actions, що дозволяє ефективно співпрацювати та розгортати моделі машинного навчання.

Розкриття потенціалу мовних моделей: Методи автоматичного узагальнення

У нашому світі, де панують дані, узагальнення має важливе значення, заощаджуючи час і покращуючи процес прийняття рішень. Він має різні застосування, включаючи агрегацію новин, узагальнення юридичних документів і фінансовий аналіз. З розвитком НЛП і штучного інтелекту такі методи, як екстрактивне та абстрактне узагальнення, стають все більш доступними та ефективними.