Стаття демонструє регресію випадкового лісу та регресію з пакуванням у C# для журналу Microsoft Visual Studio Magazine. Пояснюється, як ансамбль дерев рішень дозволяє уникнути перенавчання та покращити прогнози.
ШІ-профілям Meta бракує самосвідомості, що викликає етичні занепокоєння. Білль про права ШІ Білого дому вимагає прозорості у взаємодії зі штучним інтелектом.
Ілон Маск пропонує використовувати синтетичні дані, що самонавчаються, оскільки компанії, що займаються штучним інтелектом, стикаються з нестачею даних. Деякі застерігають від потенційного «колапсу моделі».
Дослідники MIT CSAIL створили систему штучного інтелекту, яка імітує людські голосові звуки без навчання, натхненну когнітивною наукою. Цей прорив може призвести до створення більш інтуїтивно зрозумілих інтерфейсів звукового дизайну, реалістичних ШІ-персонажів та інноваційних методів вивчення мов.
Deep Instinct пропонує DSX, передове рішення для кібербезпеки, що використовує глибоке навчання та генеративний ШІ для захисту від шкідливого програмного забезпечення та програм-вимагачів у режимі реального часу. Їхній інструмент DIANNA, що працює на базі Amazon Bedrock, розширює можливості SOC-команд, забезпечуючи швидкий аналіз відомих і невідомих загроз, вирішуючи ключові проблеми в мінливо...
Професор Джон Макдермід підкреслює необхідність того, щоб регулятори мали повноваження відкликати моделі ШІ та оцінювати провідні індикатори ризику, щоб відповісти на занепокоєння Джеффрі Хінтона щодо небезпек ШІ. Спільні дослідження і розробка ШІ для безпеки мають вирішальне значення для зниження ризиків, виходячи за рамки тестування після розробки «червоними командами».
Складність стратегічного виміру VC (SVC) зростає зі збільшенням функцій витрат для кожного окремого випадку, що призводить до нескінченності. Лінійні класифікатори з вартісними функціями можуть відрізнятися від канонічних аналогів, що впливає на складність класифікації.
Amazon Bedrock дозволяє користувачам імпортувати кастомні моделі, такі як Mistral Flan і Meta Llama, навчені в SageMaker для використання на вимогу. Це спрощує процес, пропонуючи економічно ефективне рішення для створення генеративних додатків ШІ з найкращими моделями.
У Сіднеї розслідують використання підлітком штучного інтелекту для створення та розповсюдження фальшивих зображень студенток. Залучена поліція.
«Сміття», згенероване штучним інтелектом, заполонило інтернет, а такі платформи, як Facebook, заохочують його поширення. Справжній людський контент стає рідкісним товаром, оскільки пости, створені штучним інтелектом, домінують на таких платформах, як LinkedIn і новинні сайти.
У 2025 році штучний інтелект стане рушійною силою стратегічних ініціатив у компаніях, впливаючи на власність, аутсорсинг і віддалену роботу. Взаємодія між цими аспектами має вирішальне значення для успішного впровадження ШІ, при цьому з'являються різні організаційні архетипи.
Байєсівське A/B тестування кидає виклик традиційним методам, використовуючи попередні переконання для динамічної оцінки ймовірності. Автор ділиться інсайдами з академічного та професійного досвіду, висвітлюючи переваги та недоліки байєсівського тестування.
Найпоширеніші методи регресії включають лінійну регресію, k-найближчих сусідів та ядерний гребінь. Регресія ядрового хребта є ефективною для складних нелінійних даних, але може погано масштабуватися для великих наборів даних. Перероблена реалізація KRR з ітерацією Ньютона показала багатообіцяючі результати в демонстраційному прикладі на синтетичних даних.
GenAI дозволяє легко інтегрувати об'єкти реального світу в 4D-сцени, згенеровані штучним інтелектом, для створення відео. Прогрес у галузі генеративного ШІ стрімко розвивається, особливо в текстових завданнях, тоді як створення відео все ще перебуває на ранніх стадіях, але щомісяця вдосконалюється.
Apple оновить функцію штучного інтелекту після неточних новинних сповіщень, включаючи неправдиві заяви про підозрюваного у вбивстві та Рафаеля Надаля. Оновлення уточнює, коли сповіщення є коротким викладом інформації з системи Apple Intelligence.