Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Розпочинаємо Лігу AWS LLM

AWS DeepRacer League представляє автономні перегони, а AWS LLM League демократизує машинне навчання за допомогою гейміфікованих змагань. Учасники налаштовують LLM для вирішення реальних бізнес-завдань, демонструючи переваги менших моделей з точки зору ефективності та доступності.

Людська сторона машинного навчання

Короткий зміст: У статті обговорюються людські аспекти машинного навчання, підкреслюється важливість комунікації та розуміння кінцевих користувачів. Вона також висвітлює роль інженерів AI/ML, команд MLOps і зацікавлених сторін у створенні цінних додатків.

Розкриваючи силу SHAP: Вимірювання важливості предиктора машинного навчання

Значення Шейплі вимірюють важливість предиктора в ML-моделях, оцінюючи його за допомогою інструменту SHAP у Python. Синтетичний аналіз даних дає уявлення про точність моделі та значущість змінних.

Створення чат-бота AIOps за допомогою бізнес-плагінів Amazon Q

Організації стикаються з проблемами, пов'язаними з розрізненими сторонніми додатками, але плагіни Amazon Q Business пропонують рішення. Кастомні плагіни дозволяють чат-боту взаємодіяти з різними API за допомогою природної мови, спрощуючи складні хмарні операції та підвищуючи ефективність.

Трансформація перекладу за допомогою Amazon Bedrock

TransPerfect співпрацює з AWS, щоб оптимізувати переклад багатомовного контенту за допомогою моделей Amazon Bedrock AI, підвищуючи ефективність і масштабованість. Співпраця спрямована на оптимізацію робочих процесів, зниження витрат і прискорення доставки контенту для компаній, що розвиваються в глобальному масштабі.

Переосмислення свого тилу: Правда про вашу задню частину тіла

Байєсівські методи пропонують надійне оцінювання параметрів, що виходить за рамки частотних інструментів. Розуміння надійності MCMC-самплерів має вирішальне значення для дослідників даних.

Революція в дизайні продуктів за допомогою штучного інтелекту та прискорених обчислень

nTop, заснована Бредлі Ротенбергом, пропонує дизайнерам швидкі інноваційні інструменти, використовуючи графічні процесори для паралельної обробки та штучного інтелекту. Компанія Ocado використала програмне забезпечення nTop для швидкого перепроектування своїх роботів, зменшивши їхню вагу на дві третини та заощадивши час і витрати.

OpenAI дає відсіч: Зустрічний позов проти Ілона Маска

OpenAI подає в суд на Ілона Маска за переслідування і домагається судового позову, щоб зупинити подальші атаки на компанію. Суперечка між співзасновниками загострюється, коли OpenAI переходить від некомерційної до комерційної структури.

Кунжутна промова: Модель штучного інтелекту, що революціонізує мову, схожу на людську

Sesame AI представляє модель Speech-to-Speech, що використовує джерела даних Moshi. Дізнайтеся про кодер Mimi та архітектуру з двома трансформаторами для генерації звуку.

Розкриття когнітивної складності в CNN

Моделі штучного інтелекту, такі як CNN, імітують людську візуальну обробку, але мають проблеми з причинно-наслідковими зв'язками. Незважаючи на те, що вони перевершують людину в деяких завданнях, їм не вдається узагальнювати класифікацію зображень, виділяючи обмеження.

Джеррі Адамс розглядає можливість судового позову проти Мета

Джеррі Адамс розглядає можливість судового позову проти компанії Meta за використання його книг для навчання штучного інтелекту без дозволу. Мета включила щонайменше сім його книг до переліку авторських матеріалів.

Synthesia співпрацює з Shutterstock для створення відеороликів для аватарів зі штучним інтелектом

Британський стартап Synthesia співпрацює з Shutterstock, щоб покращити аватарки зі штучним інтелектом, використовуючи стокові кадри. Угода вартістю $2 млрд спрямована на покращення виразу обличчя, тембру голосу та мови тіла аватарів для більш реалістичної взаємодії.

Божественні смаколики: Сир і хліб

Відкрийте для себе найкращі страви на основі сиру та хліба в Міжнародному валлійському центрі рідкісних страв. Лікар просить забрати плаценту додому, щоб прикрасити її трояндами, розпалюючи цікавість.

Скоротіть витрати на навчання ML за допомогою SageMaker HyperPod

Масштабне навчання на прикордонних моделях вимагає значних обчислень, а збої в роботі обладнання заважають просуванню вперед. Amazon SageMaker HyperPod мінімізує збої, підвищує ефективність та зменшує витрати на навчання.