Законы масштабирования ИИ описывают, как различные способы применения вычислений влияют на производительность модели, что приводит к усовершенствованию моделей рассуждений ИИ и ускорению спроса на вычисления. Масштабирование при предварительном обучении показывает, что увеличение объема данных, размера модели и вычислений повышает производительность модели, стимулируя инновации в архитектуре м...
Виртуализация позволяет запускать несколько виртуальных машин на одной физической машине, что очень важно для облачных сервисов. От мейнфреймов до бессерверных систем - облачные вычисления значительно эволюционировали, оказав влияние на наше повседневное цифровое взаимодействие.
Актеры озвучивания с июля бастуют в SAG-AFTRA по поводу выступлений искусственного интеллекта в видеоиграх. В споре участвуют такие крупные издатели, как Activision Blizzard и Disney, что отразилось на таких последних играх, как Destiny 2 и Genshin Impact.
Разработчики используют Pydantic для безопасной работы с переменными окружения, храня их в файле .env и загружая с помощью python-dotenv. Этот метод обеспечивает конфиденциальность данных и упрощает настройку проекта для других разработчиков.
Большие языковые модели (LLM) предсказывают слова в последовательности, выполняя такие задачи, как резюмирование текста и генерация кода. Галлюцинации в результатах LLM можно свести к минимуму с помощью методов генерации дополнений для поиска (Retrieval Augment Generation, RAG), но оценка достоверности имеет решающее значение.
Руководство Google на недавнем собрании всех сотрудников раскрыло планы по прекращению инициатив по разнообразию и отмене обещания по борьбе с оружейным ИИ. Решение компании обновить программы обучения и участвовать в геополитических дискуссиях вызвало споры среди сотрудников.
Калибровка обеспечивает соответствие прогнозов модели реальным результатам, повышая надежность. Такие меры оценки, как ожидаемая ошибка калибровки, указывают на недостатки и необходимость новых представлений о калибровке.
Джей Ди Вэнс обсуждает огромный потенциал искусственного интеллекта для экономических инноваций и национальной безопасности, подчеркивая необходимость дерегулирования для его быстрого развития. Он подчеркивает важность использования возможностей ИИ и использования потенциала технологии для создания рабочих мест и развития общества.
Профессор Массачусетского технологического института Армандо Солар-Лезама исследует извечную борьбу за контроль над машинами в золотой век генеративного ИИ. Курс «Этика вычислений» в Массачусетском технологическом институте посвящён рискам современных машин и моральной ответственности программистов и пользователей.
Основные методы регрессии включают линейную, k-Nearest Neighbors, Kernel Ridge, Gaussian Ridge, Neural Network, Random Forest, AdaBoost и Gradient Boosting. Эффективность каждого метода зависит от размера и сложности набора данных.
Патрик Косгроув подчеркивает высокое энергопотребление серверов для интернета. Китайское приложение DeepSeek AI значительно сокращает энергопотребление и углеродный след по сравнению с ChatGPT.
Модели Falcon 3 компании TII в Amazon SageMaker JumpStart предлагают самые современные языковые модели с количеством параметров до 10 Б. Достигнув современной производительности, они поддерживают различные приложения и могут быть удобно развернуты с помощью UI или Python SDK.
Новое исследование компании Tesla свидетельствует о прогрессе в области технологий автономного вождения. Элон Маск заявил, что полностью автономные автомобили «очень близки». Компания планирует выпустить бета-версию своего программного обеспечения Full Self-Driving для избранной группы клиентов.
Скорость обработки данных в облачных хранилищах данных имеет решающее значение: она влияет на затраты, своевременность данных и циклы обратной связи. Сравнительный тест скорости между Polars и Pandas призван проверить заявления о производительности и обеспечить прозрачность для потенциальных пользователей инструментов.
GraphStorm v0.4 от AWS AI представляет интеграцию с DGL-GraphBolt для более быстрого обучения и вывода выводов GNN на крупномасштабных графах. Структура графа fCSC GraphBolt позволяет сократить затраты памяти до 56 %, что повышает производительность в распределенных системах.