Новостная лента об искусственном интеллекте и машинном обучении

Главные новости и публикации каждый день! Будьте на шаг впереди: узнавайте первыми про новые идеи, тренды и инновации в сфере технологий

Раскрытие секретов прогнозирования урожайности и цен: Путешествие в науку о данных

В статье рассматривается студенческий проект автора по прогнозированию урожайности и цен на сельскохозяйственные культуры с использованием различных статистических методов, подчеркивается важность выбора интересующей темы. Проект получил высокий балл, и автор дает советы по созданию успешного проекта, включая проведение обзора литературы.

Реализация ArgSort() в C#: Сортировка массивов и списков с легкостью

В статье показано, как реализовать функцию ArgSort() на языке C#, приведены примеры кода для массивов и списков. Подчеркивается наличие перегрузки C# Array.Sort(a,b), которая позволяет выполнять сортировку по значениям в массиве.

Эффективная инверсия матриц с помощью QR-разложения в C#

В статье рассматривается авторская реализация обратной матрицы с использованием QR-разложения и освещаются различные алгоритмы и вариации, связанные с вычислением обратной матрицы. В демонстрационном примере показано вычисление обратной матрицы 4x4 и проверка результата путем умножения на исходную матрицу для получения матрицы тождеств.

Расшифровка вероятности: Раскрытие инженерии подсказок GPT

В этой статье рассматривается механика проектирования подсказок в GPT-2, большой языковой модели. В ней рассматривается, как модель узнает о мире через проекцию человеческого текста и генерирует текст на основе вероятностных распределений.

Выбор правильных проектов: Максимальное воздействие и эффективность

В статье обсуждается важность приоритезации проектов в мире аналитики и предлагается использовать ментальную модель для принятия лучших решений. В ней подчеркиваются риски, связанные с проектами, и необходимость учитывать влияние и временные ограничения при расстановке приоритетов.

Сила гауссова напыления: Революция в 3D-представлениях

Гауссово напыление - это быстрый и понятный метод представления 3D-сцен без нейронных сетей, набирающий популярность в мире, одержимом моделями искусственного интеллекта. Он использует 3D-точки с уникальными параметрами для точного соответствия рендеров известным изображениям из базы данных, предлагая свежую альтернативу сложным и непрозрачным методам вроде NeRF.

Раскрытие возможностей LLM-агентов: Улучшение анализа данных с помощью SQL

В этой статье основное внимание уделяется созданию аналитика на базе LLM и обучению его взаимодействию с базами данных SQL. Автор также представляет ClickHouse как вариант базы данных с открытым исходным кодом для больших данных и аналитических задач.

Эффективная тонкая настройка с помощью LoRA: революция в адаптации больших моделей

LoRA - это параметрически эффективный метод тонкой настройки больших моделей, позволяющий сократить вычислительные ресурсы и время. Благодаря декомпозиции матрицы обновления LoRA обладает такими преимуществами, как уменьшение объема памяти, более быстрое обучение, возможность использования меньшего оборудования и масштабируемость на большие модели.

Представляем Mixtral-8x7B: развертывание мощной модели НЛП одним щелчком мыши на Amazon SageMaker JumpStart

Большая языковая модель Mixtral-8x7B от Mistral AI теперь доступна на Amazon SageMaker JumpStart для легкого развертывания. Благодаря многоязыковой поддержке и превосходной производительности Mixtral-8x7B является привлекательным выбором для приложений NLP, предлагая более высокую скорость вывода и более низкие вычислительные затраты.

Ускорение обучения больших языковых моделей с помощью Amazon SageMaker

Обучение большим языковым моделям (LLM) набрало популярность после выпуска таких популярных моделей, как Llama 2, Falcon и Mistral, но обучение в таких масштабах может быть сложным. Библиотека параллельной модели (SMP) Amazon SageMaker упрощает этот процесс благодаря новым возможностям, включая упрощенный пользовательский интерфейс, расширенную функциональность тензорного параллелизма и оптими...

Максимизация производительности приложений LLM: Развертывание, тонкая настройка и мониторинг с помощью Amazon SageMaker и TruEra

Amazon SageMaker JumpStart предлагает предварительно обученные базовые модели, такие как Llama-2 и Mistal 7B, для генеративных задач, но часто требуется тонкая настройка. TruLens, интегрированная с Amazon Bedrock, предоставляет расширяемую систему оценки для улучшения и итерации приложений с большими языковыми моделями (LLM).

Повышение целостности данных: Продвинутые техники валидации с помощью Pandera

Pandera, мощная библиотека Python, обеспечивает качество и надежность данных благодаря передовым методам проверки, включая применение схемы, настраиваемые правила проверки и простую интеграцию с Pandas. Она обеспечивает целостность и непротиворечивость данных, что делает ее незаменимым инструментом для специалистов по анализу данных.

Революция в контакт-центрах: Использование генеративного ИИ для обеспечения исключительного клиентского опыта

Отличный клиентский опыт имеет решающее значение для дифференциации бренда и роста доходов, и 80% компаний планируют увеличить инвестиции в CX. SageMaker Canvas и генеративный искусственный интеллект могут революционизировать сценарии звонков в контакт-центрах, повышая эффективность, сокращая количество ошибок и улучшая качество поддержки клиентов.

Представляем Llama Guard: Защита моделей ИИ в Amazon SageMaker JumpStart

Модель Llama Guard теперь доступна для Amazon SageMaker JumpStart, обеспечивая защиту ввода и вывода при развертывании больших языковых моделей. Llama Guard - это открытая модель, которая помогает разработчикам защититься от создания потенциально рискованных результатов, что позволяет легко внедрять лучшие практики и улучшать открытую экосистему.

Использование возможностей OpenUSD: 3D-возрождение Nuke

В релизе Nuke от Foundry расширена поддержка OpenUSD, что изменит рабочие процессы 3D для художников. OpenUSD служит основой для бесшовной совместной работы в разных приложениях, экономит время и упрощает передачу данных.