Опрос показывает отсутствие связи между преподавателями и учениками/родителями с IDD по вопросам ИИ в образовании. NVIDIA AI Podcast исследует потенциал ИИ в улучшении специального образования и инклюзии инвалидов с советником по специальным вопросам США Сарой Минкарой и председателем Специальной Олимпиады Тимоти Шрайвером.
Amazon Q Business, генеративный ассистент с искусственным интеллектом, интегрируется с QuickSight для унифицированного разговорного взаимодействия со структурированными и неструктурированными источниками данных. Интеграция позволяет получать данные и визуализации из QuickSight в режиме реального времени, повышая точность и простоту ответов, предоставляемых Amazon Q Business.
Тим нашел утешение в ChatGPT, используя его как дневник, чтобы разобраться в своих супружеских трудностях с Джилл. Чатбот помог ему понять их разногласия и справиться с эмоциональными реакциями.
Генерируйте синтетические данные для регрессии машинного обучения с помощью нейронной сети с заданными параметрами. Упростите генерацию сложных данных с помощью настраиваемой функции на C#.
ИИ-агенты - это динамические сущности, которые в 2024 году произведут революцию в развертывании, настройке и мониторинге сетей. Они адаптируются, рассуждают и действуют автономно, повышая эффективность принятия решений и оперативность реагирования в реальном времени.
Узнайте, как с помощью сетевых наук и Python составить карту связей между персонажами в популярном сериале Arcane из вселенной League of Legends на Netflix. Собрав данные о персонажах и визуализировав сеть, вы сможете применить эти навыки к любой сложной системе, не ограничиваясь сериалом Arcane.
Ученые Массачусетского технологического института разработали фотонный чип для глубоких вычислений нейронных сетей, добившись высокой скорости и точности. Чип может произвести революцию в глубоком обучении для таких приложений, как лидар и высокоскоростные телекоммуникации.
Amazon SageMaker Fast Model Loader сокращает время развертывания LLM в 15 раз за счет потоковой передачи весов моделей из Amazon S3. Эта инновация преобразует развертывание LLM, обеспечивая более быстрое время загрузки для более эффективных приложений ИИ.
Chronos-Bolt в AutoGluon-TimeSeries обеспечивает более быстрое прогнозирование с нуля по сравнению с традиционными моделями, превосходя статистические и базовые модели глубокого обучения. Основанная на архитектуре T5, она в 250 раз быстрее и в 20 раз экономичнее по объему памяти, чем оригинальные модели Chronos, обеспечивая точность прогнозов.
Разработчики на re:Invent 2024 сталкиваются с уникальными задачами физических гонок AWS DeepRacer. Переход от виртуальных к физическим гонкам представляет собой серьезную проблему из-за различий в условиях и возможностях автомобилей.
Компания Cohere выпустила Rerank 3.5 через Rerank API на Amazon Bedrock, расширив возможности поиска релевантности и ранжирования контента для клиентов AWS. Технология Reranking улучшает результаты поиска, анализируя семантическое значение, намерения пользователей и бизнес-правила, что приносит пользу платформам электронной коммерции и глобальным организациям в различных отраслях.
В своей новой книге Мариетье Шааке рассказывает о беспрецедентной силе больших технологий. Она подчеркивает, что в отличие от прежних монополий влияние технологических компаний распространяется на различные отрасли.
Проверяйте модели машинного обучения с помощью 12 методов. Выберите подходящий, чтобы обеспечить точность прогнозов на основе имеющихся данных.
Доцент Массачусетского технологического института Кэтрин Д'Игнацио применяет данные для решения социальных проблем, расширяя возможности граждан с помощью аргументов, основанных на данных. Ее работа над проблемой феминицида привела к созданию инновационных инструментов искусственного интеллекта и книги «Подсчет феминицида», которая привлекла внимание общественности во всем мире.
Возрастает озабоченность по поводу воздействия больших языковых моделей (LLM) на окружающую среду. Пример: Llama 3.1 405B от Meta требует огромных ресурсов, выбрасывает тонны CO2. OpenAI сталкивается с финансовыми трудностями, поскольку затраты на вычисления почти сравнялись с общим доходом.