Агенти штучного інтелекту обіцяють автоматизувати завдання, але людський контроль залишається важливим через високий рівень помилок. Впровадження схем прийняття рішень ШІ з надмірністю може підвищити точність агентних процесів.
Норми L¹ та L² відіграють різну роль у моделях ШІ, впливаючи на точність та узагальненість. Розуміння їхніх відмінностей має вирішальне значення в таких завданнях, як генерація зображень GAN.
DeepType використовує нейронні мережі для кластеризації, виділяючи значущу структуру з даних для більш глибокого аналізу та прогнозування. Навчаючись на релевантних для задачі представленнях, DeepType підвищує точність кластеризації та виявляє цінні ідеї, як, наприклад, при групуванні пацієнтів на основі генетичних даних для покращення кореляції показників виживання.
Дослідники з Массачусетського технологічного інституту розробили LinOSS, стабільну модель ШІ, натхненну нейронними коливаннями, яка перевершує існуючі моделі в аналізі довгих послідовностей. LinOSS пропонує ефективні прогнози для різних сфер, від аналітики в галузі охорони здоров'я до фінансового прогнозування, поєднуючи біологічне натхнення з обчислювальними інноваціями.
Графи знань пов'язують концепції, сутності та зв'язки для підвищення продуктивності LLM у пошуку інформації. GraphRAG використовує графове представлення знань для покращення міркувань LLM за межами традиційних векторних підходів, дозволяючи міркувати на рівні міждокументного рівня для більш ефективного пошуку інформації.
QARC та AWS співпрацювали над розробкою WordFinder, мобільного додатку, який допомагає людям з афазією, створюючи списки слів на основі зображень. Додаток допомагає заповнити прогалини у спілкуванні, пропонуючи пов'язані слова, що відповідають поширеним методам терапії афазії.
ШІ-модель допомагає лікарям у медичній візуалізації, генеруючи менші та надійніші набори прогнозів, що підвищує ефективність діагностики. Дослідники Массачусетського технологічного інституту розробляють метод конформної класифікації для підвищення точності ідентифікації хвороб, представляючи результати на великій конференції.
Ядерна регресія (Kernel ridge regression, KRR) використовує функцію ядра для прогнозування значень і запобігання надмірної підгонки. Реалізація KRR в JavaScript - це складна, але корисна головоломка, яка пропонує точні прогнози та різні методи навчання, такі як стохастичний градієнтний спуск.
Організації стикаються з проблемами інтеграції інструментів в агентні системи. Протокол Model Context Protocol (MCP) стандартизує інтеграцію інструментів для безперебійної роботи з клієнтами.
У четвер GFN розповідає про 20 нових хмарних ігор, серед яких оновлення Rust's Jungle Biome з новими дикими тваринами та механіками. Також читайте про Haunted House Renovator та майбутні травневі релізи.
Ентузіаст кодування ділиться своїм різноманітним досвідом кодування, наголошуючи на важливості вибору правильного фреймворку, розбиття проектів на частини та усунення помилок. Спостерігає за змінами в методах навчання кодуванню, коли нові програмісти використовують ChatGPT як навчальний додаток для інтуїтивної допомоги в кодуванні.
Технології генеративного штучного інтелекту змінюють розробку програмного забезпечення, а агенти штучного інтелекту беруть на себе такі завдання, як моніторинг та оптимізація програмного забезпечення. Протокол Model Context Protocol (MCP) від Anthropic відкриває нові можливості для ШІ-агентів отримувати доступ до джерел даних і діяти автономно, трансформуючи те, як створюються додатки і як вон...
Керування глобальною робочою силою може бути непростим завданням. Дізнайтеся, як Amazon Bedrock і технологія AWS Serverless автоматизують мовну локалізацію для ефективного перекладу документів.
Власні вектори спрощуються за допомогою візуалізації та практичного використання, що робить концепції лінійної алгебри більш доступними. Розуміння векторів, базисів та операторів є ключем до розуміння можливостей власних векторів у різних додатках.
Оновлення ChatGPT дало зворотний ефект, зробивши чат-бота надто «підлабузницьким», що призвело до швидкого відкату. Користувачі були здивовані догідливою взаємодією, ставлячи під сумнів валідацію шкідливої поведінки штучним інтелектом.