У цій статті досліджується логіка фундаментального алгоритму, що використовується в градієнтному спуску, зосереджуючись на експоненціальній ковзній середній. Обговорюється мотивація методу, його формула та математична інтерпретація розподілу вагових коефіцієнтів.
Amazon SageMaker Studio тепер пропонує повністю керований редактор коду на основі Code-OSS, а також JupyterLab та RStudio, що дозволяє розробникам ML налаштовувати та масштабувати свої IDE за допомогою гнучких робочих просторів під назвою Spaces. Ці простори забезпечують постійне зберігання даних і конфігурацію часу виконання, підвищуючи ефективність робочого процесу і дозволяючи безперешкодно...
Новаторська мовна модель штучного інтелекту ChatGPT від OpenAI викликала захоплення своїми вражаючими здібностями, включаючи успішне складання іспитів та гру в шахи. Однак скептики стверджують, що справжній інтелект не слід плутати з запам'ятовуванням, що призвело до наукових досліджень, які вивчають цю різницю і наводять аргументи проти ШІ.
Перетворення тексту в зображення - це швидкозростаюча галузь ШІ, а Stable Diffusion дозволяє користувачам створювати високоякісні зображення за лічені секунди. Використання Retrieval Augmented Generation (RAG) покращує підказки для моделей Stable Diffusion, дозволяючи користувачам створювати власних ШІ-помічників для генерації підказок.
ICL, міжнародна виробнича та гірничодобувна корпорація, розробила власні можливості з використанням машинного навчання та комп'ютерного зору для автоматичного моніторингу свого гірничодобувного обладнання. За підтримки програми AWS Prototyping вони змогли створити фреймворк на AWS за допомогою Amazon SageMaker для отримання зображень з 30 камер, з потенціалом масштабування до тисяч.
Пориньте у світ штучного інтелекту - створіть з нуля тренажерний зал для навчання з глибоким підкріпленням. Отримайте практичний досвід і розробіть власний тренажерний зал, щоб навчити агента вирішувати прості завдання, закладаючи фундамент для більш складних середовищ і систем.
Talent.com співпрацює з AWS для розробки системи рекомендацій щодо роботи з використанням глибокого навчання, яка обробляє 5 мільйонів щоденних записів менш ніж за 1 годину. Система включає в себе розробку функцій, архітектуру моделі глибокого навчання, оптимізацію гіперпараметрів та оцінку моделі, і все це за допомогою Python.
Amazon Comprehend пропонує попередньо навчені та кастомні API для обробки природної мови. Вони розробили інструмент попереднього маркування, який автоматично анотує документи, використовуючи наявні дані табличних об'єктів, зменшуючи ручну роботу, необхідну для навчання точних користувацьких моделей розпізнавання об'єктів.
Цього року генеративний ШІ та великі мовні моделі домінували в корпоративних трендах, а такі компанії, як Amdocs, Dropbox та SAP, створювали індивідуальні додатки з використанням RAG та LLM. Попередньо навчені моделі з відкритим вихідним кодом повинні революціонізувати операційні стратегії бізнесу, тоді як готові ШІ та мікросервіси полегшують розробникам створення складних додатків.
Dropbox зіткнувся з негативною реакцією після того, як увімкнув налаштування за замовчуванням, яке дозволяє передавати дані користувачів до OpenAI для пошуку за допомогою штучного інтелекту, але запевняє, що дані передаються лише при активному використанні та видаляються протягом 30 днів. Генеральний директор Dropbox Дрю Х'юстон вибачається за плутанину і підкреслює, що жодні дані користувачів...
Tesla випустила демонстраційне відео свого гуманоїдного робота Optimus Gen 2, яке демонструє значні апаратні покращення. Скептицизм залишається після нещодавніх суперечок щодо демонстрації ШІ.
Проекти збору даних часто не досягають реального впливу через такі макроелементи, як наявність даних, набір навичок, часові рамки, організаційна готовність та політичне середовище. Наявність і доступність відповідних даних має фундаментальне значення, і якщо дані є недосяжними, доцільність проекту слід переглянути.
Getir, піонер надшвидкої доставки продуктів, впровадив наскрізну систему управління персоналом з використанням Amazon Forecast і AWS Step Functions, що дозволило скоротити час моделювання на 70% і підвищити точність прогнозування на 90%. Цей комплексний проект розраховує потреби в кур'єрах і вирішує проблему розподілу змін, оптимізуючи графіки змін і мінімізуючи кількість пропущених замовлень.
Розвиток технологій перетворення тексту в зображення на основі штучного інтелекту призвів до появи великої кількості зображень низької якості, що викликало скептицизм і дезорієнтацію. Однак з'явилося нове явище - перетворення тексту в САПР за допомогою ШІ, в якому лідирують такі великі гравці, як Autodesk, Google, OpenAI та NVIDIA.
LM Studio - це інструмент, який дозволяє локально використовувати великі мовні моделі, такі як GPT-x, LLaMA-x та Orca-x, пропонуючи чистий та інтуїтивно зрозумілий інтерфейс для дослідження моделей та виконання завдань на міркування. Однак його творець і потенційні зв'язки з іншими компаніями залишаються незрозумілими.