Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Оптимізація управління у сфері протидії відмиванню коштів: Amazon SageMaker + DataZone

Amazon SageMaker та Amazon DataZone інтегрувалися, щоб спростити управління, співпрацю та управління даними для бізнесу. Нові можливості включають управління проектами, управління інфраструктурою та управління активами для спрощення життєвого циклу ВК.

Spybot: Чат-бот зі штучним інтелектом від Microsoft для шпигунства

Microsoft представила штучний інтелект на базі GPT-4 для американських спецслужб, що забезпечує безпечний аналіз і взаємодію з чат-ботами. Модель штучного інтелекту вирішує проблеми безпеки даних, але чиновники повинні остерігатися потенційних зловживань через обмеження ШІ.

Оптимізація аналізу трафіку за допомогою PCA та K-середніх у Python

PCA використовується для зменшення розмірності та кластеризації станцій метрополітену Тайбея на основі погодинних даних про трафік. Аналіз моделей руху та кластеризація показують схожість пропорцій пасажиропотоку впродовж дня.

Легко перетворюйте текст на графіки знань за допомогою Graph Maker

Graph Maker - це бібліотека Python, що використовує Llama3 та Mixtral для побудови графів знань з тексту. Бібліотека спрямована на вирішення проблем і була добре сприйнята, завдяки зв'язкам з дослідженнями MIT.

Опанування аналізу часових рядів та прогнозування

Відкрийте для себе можливості передбачення майбутнього за допомогою аналізу часових рядів та прогнозування. Дізнайтеся, як аналізувати тенденції даних і робити точні прогнози за допомогою Python та статистичних моделей.

Захист мобільних даних за допомогою федеративного навчання

Мета досліджує федеративне навчання з диференційованою конфіденційністю для підвищення конфіденційності користувачів шляхом навчання ML-моделей на мобільних пристроях, додаючи шум для запобігання запам'ятовуванню даних. Виклики включають балансування міток і повільне навчання, але нова системна архітектура Meta спрямована на вирішення цих проблем, дозволяючи масштабувати і ефективно навчати мо...

Пом'якшення модельного ризику у фінансах

Управління модельними ризиками (Model Risk Management, MRM) у фінансах має вирішальне значення для управління ризиками, пов'язаними з використанням моделей машинного навчання для прийняття рішень у фінансових установах. Weights & Biases може підвищити прозорість і швидкість робочого процесу, зменшуючи потенціал для значних фінансових втрат.

Освоєння MLOps: основи відстеження експерименту

Розробка моделей машинного навчання схожа на випічку - невеликі зміни можуть мати великий вплив. Відстеження експерименту має вирішальне значення для відстеження входів і виходів, щоб знайти найефективнішу конфігурацію. Організація та ведення журналу експериментів з машинного навчання допомагає не втратити з поля зору те, що працює, а що ні.

ШІ виявив 40 підроблених творів мистецтва на eBay

Фахівець доктор Каріна Поповічі використовує штучний інтелект, щоб ідентифікувати до 40 підроблених картин на eBay, включаючи «Моне» і «Ренуара». Передова технологія показує шокуючі результати в автентифікації творів мистецтва.

Розкриваємо можливості ML-моделей: Посібник з реєстру

Реєстр моделей ВК: Централізований хаб для команд ML для зберігання, каталогізації та розгортання моделей, що забезпечує ефективну співпрацю та безперебійне управління моделями. Weights & Biases Model Registry спрощує розробку, тестування, розгортання та моніторинг моделей для підвищення продуктивності у сфері протидії відмиванню грошей.

Революціонізуйте наради: Підвищуйте продуктивність за допомогою автоматизованих резюме

Віртуальні бізнес-зустрічі залишаються, і очікується, що до 2024 року 41% з них будуть гібридними або віртуальними. Автоматизуйте підбиття підсумків зустрічей за допомогою штучного інтелекту, щоб ефективно зосередитися та підвищити продуктивність.

Зламуючи код: Штучний інтелект у виявленні банківського шахрайства

Ефективні стратегії виявлення шахрайства з використанням штучного інтелекту мають вирішальне значення для запобігання фінансовим втратам у банківському секторі. З такими видами шахрайства, як крадіжка персональних даних, шахрайство з транзакціями та шахрайство з кредитами, можна боротися за допомогою розширеної аналітики та моніторингу в режимі реального часу.

Забезпечення комплаєнсу: Штучний інтелект у фінансах

Дотримання регуляторних вимог має вирішальне значення у фінансовій сфері для захисту клієнтів, установ та економіки. Використання таких інструментів, як Weights & Biases, допомагає забезпечити відповідність фінансових моделей на основі ШІ регуляторним стандартам, сприяючи прозорості та доброчесності в секторі.