Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Ефективне доналаштування за допомогою LoRA: революційна адаптація великих моделей

LoRA - це ефективний метод точного налаштування великих моделей, що дозволяє зменшити обчислювальні ресурси та час. Завдяки декомпозиції матриці оновлень LoRA пропонує такі переваги, як менший обсяг пам'яті, швидше навчання, можливість використання меншого апаратного забезпечення та масштабованість до більших моделей.

Підвищення цілісності даних: Передові методи перевірки з Pandera

Pandera, потужна бібліотека Python, сприяє підвищенню якості та надійності даних завдяки вдосконаленим методам валідації, включаючи застосування схем, настроювані правила валідації та безперешкодну інтеграцію з Pandas. Вона забезпечує цілісність та узгодженість даних, що робить її незамінним інструментом для науковців з даних.

Революція в контакт-центрах: Використання генеративного ШІ для виняткового клієнтського досвіду

Відмінний клієнтський досвід має вирішальне значення для диференціації бренду та зростання доходів, а 80% компаній планують інвестувати більше в CX. SageMaker Canvas та генеративний ШІ можуть революціонізувати сценарії дзвінків у контакт-центрах, підвищити ефективність, зменшити кількість помилок та покращити підтримку клієнтів.

Розкриваємо можливості OpenUSD: 3D-ренесанс Nuke

У версії Nuke від Foundry розширено підтримку OpenUSD, що трансформує робочі процеси 3D-художників. OpenUSD слугує основою для безперешкодної співпраці між додатками, заощаджуючи час і спрощуючи передачу даних.

Представляємо Llama Guard: Захист моделей штучного інтелекту в Amazon SageMaker JumpStart

Модель Llama Guard тепер доступна для Amazon SageMaker JumpStart, забезпечуючи захист вхідних і вихідних даних при розгортанні великих мовних моделей. Llama Guard - це загальнодоступна модель, яка допомагає розробникам захиститися від генерації потенційно ризикованих результатів, полегшуючи впровадження найкращих практик та вдосконалення відкритої екосистеми.

Революційні роботи: Досягнення в автономних технологіях 2023 року

Автономні машини в робототехніці продемонстрували свої можливості в 2023 році, серед яких варто відзначити розумну коляску зі штучним інтелектом від Glüxkind, систему mGripAI для пакування харчових продуктів від Soft Robotics і робота TM25S від Quanta для інспекції продукції, в усіх з яких використовуються технології NVIDIA.

Розкриваємо можливості Amazon SageMaker: Захист ваших даних за допомогою виявлення аномалій

Клієнти стикаються зі зростаючими загрозами безпеці та вразливостями в міру того, як розширюється їхній цифровий слід. Amazon Security Lake та Amazon SageMaker пропонують нове рішення, централізуючи та стандартизуючи дані про безпеку, використовуючи при цьому машинне навчання для виявлення аномалій.

Приховані небезпеки сліпого A/B-тестування всього

Провідні голоси в області експериментів пропонують тестувати все, але незручна правда про A/B-тестування розкриває його недоліки. Такі компанії, як Google, Amazon і Netflix, успішно впровадили A/B-тестування, але сліпе дотримання їхніх правил може призвести до плутанини і катастрофи для інших бізнесів.

Розкриття потенціалу багатомовних систем RAG: Вичерпний посібник

Ця стаття містить вступ до розробки неангломовних систем RAG, зокрема поради щодо завантаження даних, сегментації тексту та моделей вбудовування. RAG змінює те, як організації використовують дані для інтелектуальних чат-ботів, але існує прогалина для менших мов.

Розквіт гауссівського розбризкування: Революція в аватарному просторі

Нещодавній сплеск публікацій про гаусове розбризкування, зокрема GaussianAvatars та MonoGaussianAvatar, революціонізує сферу цифрових людей. Гаусове розбризкування пропонує візуально приголомшливу якість, високу частоту кадрів і легке редагування, що робить його потужним методом для представлення 3D-сцен.

Масштабна оптимізація операцій з машинного навчання за допомогою PwC's Machine Learning Ops Accelerator

Операційний прискорювач машинного навчання PwC в Австралії, побудований на власних сервісах AWS, спрощує процес переходу моделей машинного навчання від розробки до масштабного розгортання. Прискорювач включає сім ключових інтегрованих можливостей, які забезпечують безперервну інтеграцію, безперервну доставку, безперервне навчання та безперервний моніторинг кейсів використання машинного навчання.

Революційний рендеринг у реальному часі: DLSS 3.5 виводить рендеринг D5 на нові висоти

NVIDIA Studio представляє DLSS 3.5 для реалістичної візуалізації з трасуванням променів у D5 Render, покращуючи досвід редагування та підвищуючи частоту кадрів. Відомий художник Майкл Гілмор (Michael Gilmour) демонструє приголомшливі зимові країни чудес у довгих відео, пропонуючи глядачам спокій і розслаблення.

Вивільнення інсайтів у реальному часі: MongoDB та SageMaker Canvas революціонізують процес прийняття рішень

У статті досліджуються проблеми, з якими стикаються галузі, що не мають прогнозів у реальному часі, такі як фінанси, роздрібна торгівля, управління ланцюгами поставок та логістика. Вона висвітлює потенціал використання управління даними часових рядів MongoDB та Amazon SageMaker Canvas для подолання цих викликів та прийняття рішень на основі даних.

Хроніки штучного інтелекту: Розгадування хайпу та впливу 2023 року

У 2023 році генеративний штучний інтелект штурмував технологічну індустрію, домінуючи в заголовках новин і викликаючи дискусії. На тлі появи фігур, пов'язаних зі штучним інтелектом, у нетехнічних людей виникає плутанина щодо того, кому довіряти, які продукти зі штучним інтелектом використовувати, і чи становить штучний інтелект загрозу їхньому життю та роботі. Крім того, невпинний темп дослідж...

Розкриваючи можливості Google Gemini: ШІ-моделі на кінчиках ваших пальців

Gemini - це сімейство великих моделей штучного інтелекту від Google, включаючи Ultra, Pro і Nano. У статті розглядається тестування Gemini-Pro за допомогою Google AI Studio, ноутбука Jupyter і Python, демонструються його можливості у створенні контенту та відповідях на запитання.