Створення резюме Леонардо да Вінчі надихнуло новий додаток на основі штучного інтелекту для створення структурованих документів, який демонструє можливості великих мовних моделей (LLM), що виходять за рамки чат-додатків. У навчальному посібнику висвітлюється безперебійний робочий процес агентів, які працюють разом, щоб легко та ефективно перетворити персональні дані на відшліфоване резюме.
Алгоритми машинного навчання допомагають виявляти шахрайство в режимі реального часу в онлайн-транзакціях, знижуючи фінансові ризики. Deloitte демонструє потенціал квантових обчислень для покращення виявлення шахрайства на цифрових платіжних платформах за допомогою гібридного рішення на основі квантових нейронних мереж, створеного за допомогою Amazon Bracket. Квантові обчислення обіцяють швидш...
Шейла Хенкок розмірковує про вплив штучного інтелекту на акторську майстерність та еволюцію персональних технологій. Незважаючи на освоєння Google і Zoom, штучний інтелект залишається складним викликом для ветерана акторської майстерності та письменника.
Скарлетт Йоханссон критикує OpenAI за використання імітації її голосу в оновленні ChatGPT, посилаючись на особисті цінності. Вона відмовилася озвучувати Sky, посилаючись на свою роль у фільмі Спайка Джонса «Вона».
AWS представляє Amazon Q Business, чат-асистента зі штучним інтелектом, який інтегрує дані підтримки для отримання корисної інформації. Це рішення впорядковує ІТ-операції, покращує підтримку клієнтів і підвищує ефективність AWS.
Навчіть швидку, легку модель виявлення об'єктів BlazeFace для браузерних додатків у реальному часі. Використовуйте PyTorch, TFLite та JavaScript для ефективного навчання та розгортання моделі.
Google DeepMind запускає проект Visualising AI, щоб дослідити методи RAG для підвищення точності пошуку. Gemini Pro обробляє контекст 2 мільйонів токенів, підкреслюючи важливість передових методів пошуку для магістрів права в таких галузях, як юриспруденція та журналістика.
Нейронні мережі покращують дизайн роботів, але створюють проблеми з безпекою. Дослідники Массачусетського технологічного інституту розробляють нові методи забезпечення стабільності, що уможливлює безпечніше розгортання роботів і транспортних засобів, керованих штучним інтелектом.
Машинне навчання чудово підходить для прогнозування, але не для пояснення причинно-наслідкових зв'язків. Причинно-наслідкові зв'язки мають вирішальне значення для розуміння та впливу на результати.
У промові Кінга не йшлося про репресії проти іноземних працівників та законопроект про штучний інтелект. У 40 запропонованих законопроектах не вистачало деяких раніше запропонованих ідей.
Дізнайтеся про інженерію ознак та побудову MLP-моделі для прогнозування часових рядів. Дізнайтеся, як ефективно проектувати ознаки та використовувати багатошарову персептронну модель для точного прогнозування.
Союзники Трампа підготували проект указу про ШІ, спрямований на розвиток військових технологій і скорочення регулювання, що сигналізує про можливу зміну політики в 2025 році. Запропонований указ включає «Манхеттенські проекти» для військового ШІ та галузевих агентств для захисту систем, що принесе користь таким компаніям, як Palantir та Anduril.
AWS представляє модель тонкого налаштування Cohere Command R на Amazon SageMaker, що розширює можливості LLM для корпоративних завдань. Тонке налаштування дозволяє кастомізувати для конкретних доменів, що призводить до значного підвищення продуктивності в різних галузях.
Аналітичний центр Тоні Блера проконсультувався з ChatGPT щодо впливу ШІ на робочі місця в державному секторі. Критики ставлять під сумнів достовірність результатів і оцінку щорічних витрат на впровадження ШІ в уряді в розмірі 4 млрд фунтів стерлінгів.
Колишній дослідник OpenAI Андрій Карпатій запускає Eureka Labs, платформу для навчання ШІ, орієнтовану на створення великих мовних моделей. Платформа має на меті запропонувати персоналізоване навчання в масштабах, роблячи якісну освіту більш доступною в усьому світі.