У звіті OpenAI йдеться про те, що штучний інтелект використовувався для дезінформаційних кампаній з боку Росії, Китаю, Ізраїлю та Ірану, але не зміг охопити широку аудиторію. Генеративні моделі АІ використовувалися для створення та розміщення пропагандистських матеріалів у соціальних мережах.
Регресійна модель LightGBM прогнозує дохід з точністю до інтервалу, демонструючи ефективність моделі на синтетичних даних. Модель демонструє точність для різних діапазонів доходу, підкреслюючи важливість визначення близькості цільового значення для правильного прогнозування.
Нещодавня стаття Anthropic заглиблюється в механічну інтерпретованість великих мовних моделей, показуючи, як нейронні мережі представляють значущі концепції за допомогою напрямків у просторі активації. Дослідження надає докази того, що ознаки, які можна інтерпретувати, корелюють з конкретними напрямками, впливаючи на результат роботи моделі.
Vitech співпрацює з Amazon Bedrock для створення VitechIQ, чат-бота на основі штучного інтелекту для пошуку внутрішньої документації. Amazon Bedrock пропонує повністю керовані бази знань для таких чат-ботів, як VitechIQ.
Колишній член правління OpenAI висловлює здивування з приводу публічного релізу ChatGPT у Twitter, який змістив фокус компанії. Також обговорювалися звільнення та повернення на роботу генерального директора Сема Альтмана.
Безперервна інтеграція (CI) та безперервна доставка (CD) трансформують розробку машинного навчання (ML), сприяючи співпраці, якості коду та ранньому виявленню проблем. Автоматизовані процеси в MLOps забезпечують стабільну роботу моделі та швидші ітерації для ефективної розробки моделей машинного навчання.
Агенти ШІ, такі як ChatGPT, доводять, що ШІ може працювати на рівні людини. Agent Engineering Framework спрямований на розробку ефективних ШІ-агентів.
OpenAI зіткнувся з негативною реакцією Скарлетт Йоханссон через новий чат-бот Sky, схожий на її героїню у фільмі «Вона». Глобальний саміт зі штучного інтелекту в Південній Кореї та звіт Інституту Алана Тьюринга про вплив АІ на вибори. Алекс Херн з Guardian обговорює останні розробки в галузі АІ з Мадлен Фінлі на BBC News.
Мультимодальні моделі, такі як Claude3 і GPT-4V, інтегрують текст і зображення для кращого розуміння. Точне налаштування LLaVA на конкретних даних підвищує продуктивність у різних галузях.
Великі мовні моделі, такі як GPT та BERT, покладаються на архітектуру трансформатора та механізм самоуваги для створення контекстуально багатих вбудовувань, що революціонізувало НЛП. Статичні вставки, такі як word2vec, не здатні вловити контекстну інформацію, що підкреслює важливість динамічних вставок у мовних моделях.
Llama, популярна велика мовна модель Meta AI, стикається з труднощами при навчанні, але може досягти порівнянної якості за допомогою належного масштабування та найкращих практик на AWS Trainium. Розподілене навчання на 100+ вузлах є складним завданням, але кластери Trainium пропонують економію коштів, ефективне відновлення та покращену стабільність для навчання LLM.
MIT CSAIL та Google Research представляють Alchemist - систему, яка може змінювати властивості матеріалів на зображеннях за допомогою унікального інтерфейсу. Система може покращувати моделі відеоігор, візуальні ефекти штучного інтелекту та дані для навчання роботів, пропонуючи точний контроль над такими атрибутами, як шорсткість та прозорість.
Цитата Пітера Друкера «What gets measured, gets managed» підкреслює важливість пріоритизації метрик для прийняття ефективних бізнес-рішень. Історія успіху Uber підкреслює важливість узгодження метрик з етапами життєвого циклу продукту для стратегічного зростання.
Адаптація домену для LLM пояснюється в серії з 3 частин. Дізнайтеся, як ШІ-моделі борються за межі своєї «зони комфорту».
Google використовує роздільну здатність сутностей для зіставлення продуктів на різних платформах, допомагаючи компаніям електронної комерції аналізувати конкурентів і порівнювати ціни. Фреймворк Entity Resolution (ER) допомагає виявляти дублікати оголошень і встановлювати конкурентні ціни в роздрібній торгівлі.