Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Опанування LLM зі схемами прийняття рішень зі штучним інтелектом

Агенти штучного інтелекту обіцяють автоматизувати завдання, але людський контроль залишається важливим через високий рівень помилок. Впровадження схем прийняття рішень ШІ з надмірністю може підвищити точність агентних процесів.

Розширення можливостей спілкування з афазією за допомогою WordFinder

QARC та AWS співпрацювали над розробкою WordFinder, мобільного додатку, який допомагає людям з афазією, створюючи списки слів на основі зображень. Додаток допомагає заповнити прогалини у спілкуванні, пропонуючи пов'язані слова, що відповідають поширеним методам терапії афазії.

Нескінченність розв'язана

Норми L¹ та L² відіграють різну роль у моделях ШІ, впливаючи на точність та узагальненість. Розуміння їхніх відмінностей має вирішальне значення в таких завданнях, як генерація зображень GAN.

Освоєння кодування з ChatGPT: Подорож початківця

Ентузіаст кодування ділиться своїм різноманітним досвідом кодування, наголошуючи на важливості вибору правильного фреймворку, розбиття проектів на частини та усунення помилок. Спостерігає за змінами в методах навчання кодуванню, коли нові програмісти використовують ChatGPT як навчальний додаток для інтуїтивної допомоги в кодуванні.

Прискорення ШІ-моделей за допомогою протоколу контексту моделі

Організації стикаються з проблемами інтеграції інструментів в агентні системи. Протокол Model Context Protocol (MCP) стандартизує інтеграцію інструментів для безперебійної роботи з клієнтами.

Побудова довіри: Штучний інтелект на високих ставках

ШІ-модель допомагає лікарям у медичній візуалізації, генеруючи менші та надійніші набори прогнозів, що підвищує ефективність діагностики. Дослідники Массачусетського технологічного інституту розробляють метод конформної класифікації для підвищення точності ідентифікації хвороб, представляючи результати на великій конференції.

Ефективна регресія хребта ядра з JavaScript

Ядерна регресія (Kernel ridge regression, KRR) використовує функцію ядра для прогнозування значень і запобігання надмірної підгонки. Реалізація KRR в JavaScript - це складна, але корисна головоломка, яка пропонує точні прогнози та різні методи навчання, такі як стохастичний градієнтний спуск.

Оптимізуйте переклад і стандартизацію за допомогою Amazon Bedrock & Translate

Керування глобальною робочою силою може бути непростим завданням. Дізнайтеся, як Amazon Bedrock і технологія AWS Serverless автоматизують мовну локалізацію для ефективного перекладу документів.

Зростання ролі інструментів MCP у спостережуваності

Технології генеративного штучного інтелекту змінюють розробку програмного забезпечення, а агенти штучного інтелекту беруть на себе такі завдання, як моніторинг та оптимізація програмного забезпечення. Протокол Model Context Protocol (MCP) від Anthropic відкриває нові можливості для ШІ-агентів отримувати доступ до джерел даних і діяти автономно, трансформуючи те, як створюються додатки і як вон...

Створіть і розгорніть чат зі штучним інтелектом з пам'яттю в Streamlit

Дізнайтеся, як створити чат на основі LLM Gemini в Streamlit, відстежуйте використання API в Google Cloud Console. Streamlit спрощує перетворення скриптів на Python в інтерактивні веб-додатки з мінімальною роботою з фронтендом.

Освоєння власних векторів

Власні вектори спрощуються за допомогою візуалізації та практичного використання, що робить концепції лінійної алгебри більш доступними. Розуміння векторів, базисів та операторів є ключем до розуміння можливостей власних векторів у різних додатках.

Відкриваємо правду: розворот ChatGPT

Оновлення ChatGPT дало зворотний ефект, зробивши чат-бота надто «підлабузницьким», що призвело до швидкого відкату. Користувачі були здивовані догідливою взаємодією, ставлячи під сумнів валідацію шкідливої поведінки штучним інтелектом.

Освоєння навчання з підкріпленням на одному прикладі

Microsoft та академічні дослідники представляють 1-shot RLVR, досягаючи вражаючих результатів лише на одному навчальному прикладі, революціонізуючи точне налаштування мовних моделей для задач міркування. Розробники можуть використовувати цю технологію для математичних агентів, репетиторів і копілотів без необхідності використання великих наборів даних або людських міток.

Прискорення успіху в науці про дані: Частина 1

Дослідники даних стикаються з проблемами на етапі експериментів через використання ноутбуків Jupyter та погані практики кодування. Впровадження структурованих принципів може впорядкувати експерименти, скоротити час на створення цінності та підвищити ефективність реалізації проєктів.