Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Прийняття невизначеності

Чесність у ймовірнісних прогнозах є ключем до уникнення упереджених прогнозів. Лінійні правила підрахунку балів можуть стимулювати нечесність, що призводить до погано відкаліброваних машинних прогнозів. Книга Девіда Шпігельхальтера підкреслює важливість покарання за впевнені, але помилкові переконання для отримання неупереджених оцінок.

Розблокування інсайтів користувачів: Семантична кластеризація з підказками LLM

Дізнайтеся, як використовувати підказки штучного інтелекту та LLM для семантичної кластеризації повідомлень на форумах користувачів швидше та з меншими зусиллями. Натхненний Clio, цей підручник використовує загальнодоступні повідомлення Discord для аналізу розмов про технічну допомогу.

Підвищення безпеки велосипедистів за допомогою Amazon Rekognition

Безпека велосипедистів викликає все більше занепокоєння через небезпечні зіткнення з транспортними засобами. Рішення машинного навчання з використанням Amazon Rekognition допомагає велосипедистам виявляти небезпечні ситуації та сприяти підвищенню безпеки на дорогах.

Освоєння пуассонівської регресії за допомогою C#

Пуассонівська регресія прогнозує числові значення для даних підрахунку за допомогою спеціальних методів і математичних припущень. У демонстраційному прикладі з використанням C# було створено синтетичні дані Пуассона і досягнуто високої точності за допомогою однієї константи та коефіцієнтів.

Круглоголові АІ проти технологічної королівської сім'ї: Битва майбутнього

Технологічні гіганти, такі як Microsoft, Alphabet, Amazon і Meta, інвестують значні кошти в ШІ, що нагадує «пластмасу» у фільмі «Випускник». Прагнення до інтелекту людського рівня ставиться під сумнів заради більш практичних досягнень.

Вплив штучного інтелекту: Ваша робота змінюється

Поділіться своїм досвідом впливу штучного інтелекту на роботу, щоб дослідити поточний і майбутній вплив технології на роботу. Сприяйте розумінню позитивного, негативного або змішаного впливу штучного інтелекту на робочі ролі.

Від нуля до ML-інженера: Моя нестандартна подорож

Інженер з машинного навчання розповідає про свій шлях від студента-фізика до фахівця з аналізу даних, який отримав першу роль після подачі заявок на 300+ вакансій. Зацікавився штучним інтелектом після перегляду документального фільму AlphaGo від DeepMind, який підкреслює важливість наполегливої праці та завзятості.

Розкриваємо силу причинно-наслідкових зв'язків у ваших даних

Причинно-наслідкові міркування можуть розкрити взаємозв'язки в даних, уникаючи неправильної інтерпретації. Розуміння історії, що стоїть за даними, має вирішальне значення для кращого аналізу.

Розшифровка хибних спрацьовувань: Ближчий погляд на плутанину матриці помилкових спрацьовувань

Проблеми бінарної класифікації можуть бути складними для інтерпретації через неоднозначність матриці плутанини, де визначення TP, TN, FP і FN можуть відрізнятися. Розуміння цих термінів має вирішальне значення для точного аналізу. Будьте обережні при інтерпретації матриць розбіжностей, щоб уникнути плутанини в результатах машинного навчання.

Оволодіння досконалістю інженерії даних

Інженерія даних має вирішальне значення для бізнесу, з акцентом на створення Центру передового досвіду з інженерії даних. Еволюція інженерів даних забезпечує точний, якісний потік даних для прийняття рішень на основі даних.

Штучний інтелект розкриває секрети навігації білків

Дослідники розробили ProtGPS - модель, яка прогнозує локалізацію білків у певних компартментах клітин. Цей інструмент штучного інтелекту також може створювати нові білки та допомагати зрозуміти механізми захворювань.

Розкриття можливостей наборів даних

Резюме: Створення ефективних наборів даних зображень для проектів класифікації зображень передбачає встановлення відсікання зображень, довірчих порогів та використання поетапних/синтетичних даних для покращення продуктивності моделі. Досягнення балансу між занадто малою та занадто великою кількістю зображень у класі має вирішальне значення для оптимальних результатів навчання.