Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Штучний інтелект документів Snowflake: всебічний огляд

Document AI, який пропонує Snowflake, поєднує в собі OCR та LLM для ефективного вилучення інформації з цифрових документів. Він з'єднує паперовий і цифровий світи, перетворюючи обробку даних на просту і зручну.

План Nvidia щодо інфраструктури штучного інтелекту в США вартістю $500 млрд на тлі загрози тарифів на чіпи

Nvidia інвестує $500 млрд в інфраструктуру штучного інтелекту в США на тлі загроз Трампа щодо імпорту. Генеральний директор пообідав в Мар-а-Лаго.

Підвищення продуктивності: Mixtral 8x7B на Amazon SageMaker

AWS пропонує оптимізовані рішення для розгортання великих мовних моделей, таких як Mixtral 8x7B, використовуючи чипи AWS Inferentia та AWS Trainium для високопродуктивного виведення. Дізнайтеся, як розгорнути модель Mixtral на екземплярах AWS Inferentia2 для економічно ефективної генерації тексту.

Оптимізація клінічних випробувань за допомогою Amazon Bedrock

Компанія Clario, лідер у галузі рішень для кінцевих даних для клінічних досліджень, модернізувала генерацію документів за допомогою сервісів штучного інтелекту AWS, щоб оптимізувати робочі процеси. Рішення автоматизує генерацію BRS, скорочуючи трудомісткі ручні завдання та мінімізуючи помилки в документації клінічних досліджень.

Демістифікація стека ШІ

Створення веб-додатків з інтеграцією генеративного ШІ є складним завданням, але розбиття його на шари, такі як стек ШІ, може допомогти зорієнтуватися в цьому ландшафті. Такі компанії, як OpenAI, використовують різні рівні, співпрацюючи з Microsoft для створення інфраструктури та веб-скребків для даних, щоб забезпечити роботу таких додатків, як ChatGPT.

Покращення лінійної регресії в C# з двосторонньою взаємодією

Застосування лінійної регресії з двосторонніми взаємодіями значно підвищило точність прогнозування. Модель досягла 83% точності на навчальних даних і 80% на тестових даних, що свідчить про її ефективність.

Революційна трансформація робочих навантажень підприємства за допомогою агентів Amazon Bedrock

Генеративний ШІ, як-от Amazon Web Services (AWS), надає можливості перетворення тексту в SQL для ефективнішого дослідження даних. Реалізація в масштабі підприємства з розширеними інструментами обробки помилок підвищує ефективність запитів до бази даних.

Трансформація перекладу за допомогою Amazon Bedrock

TransPerfect співпрацює з AWS, щоб оптимізувати переклад багатомовного контенту за допомогою моделей Amazon Bedrock AI, підвищуючи ефективність і масштабованість. Співпраця спрямована на оптимізацію робочих процесів, зниження витрат і прискорення доставки контенту для компаній, що розвиваються в глобальному масштабі.

Переосмислення свого тилу: Правда про вашу задню частину тіла

Байєсівські методи пропонують надійне оцінювання параметрів, що виходить за рамки частотних інструментів. Розуміння надійності MCMC-самплерів має вирішальне значення для дослідників даних.

Кунжутна промова: Модель штучного інтелекту, що революціонізує мову, схожу на людську

Sesame AI представляє модель Speech-to-Speech, що використовує джерела даних Moshi. Дізнайтеся про кодер Mimi та архітектуру з двома трансформаторами для генерації звуку.

Розпочинаємо Лігу AWS LLM

AWS DeepRacer League представляє автономні перегони, а AWS LLM League демократизує машинне навчання за допомогою гейміфікованих змагань. Учасники налаштовують LLM для вирішення реальних бізнес-завдань, демонструючи переваги менших моделей з точки зору ефективності та доступності.

Розкриваючи силу SHAP: Вимірювання важливості предиктора машинного навчання

Значення Шейплі вимірюють важливість предиктора в ML-моделях, оцінюючи його за допомогою інструменту SHAP у Python. Синтетичний аналіз даних дає уявлення про точність моделі та значущість змінних.

Створення чат-бота AIOps за допомогою бізнес-плагінів Amazon Q

Організації стикаються з проблемами, пов'язаними з розрізненими сторонніми додатками, але плагіни Amazon Q Business пропонують рішення. Кастомні плагіни дозволяють чат-боту взаємодіяти з різними API за допомогою природної мови, спрощуючи складні хмарні операції та підвищуючи ефективність.

Розкриття когнітивної складності в CNN

Моделі штучного інтелекту, такі як CNN, імітують людську візуальну обробку, але мають проблеми з причинно-наслідковими зв'язками. Незважаючи на те, що вони перевершують людину в деяких завданнях, їм не вдається узагальнювати класифікацію зображень, виділяючи обмеження.