Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Хроніки штучного інтелекту: Розгадування хайпу та впливу 2023 року

У 2023 році генеративний штучний інтелект штурмував технологічну індустрію, домінуючи в заголовках новин і викликаючи дискусії. На тлі появи фігур, пов'язаних зі штучним інтелектом, у нетехнічних людей виникає плутанина щодо того, кому довіряти, які продукти зі штучним інтелектом використовувати, і чи становить штучний інтелект загрозу їхньому життю та роботі. Крім того, невпинний темп дослідж...

ISO 42001: Підвищення рівня відповідального ШІ для глобальної довіри

AWS підкреслює важливість відповідального використання ШІ та оголошує про своє прагнення прийняти ISO 42001, міжнародний стандарт управління системами ШІ в організаціях, щоб завоювати довіру громадськості. AWS активно співпрацює з міжнародними зацікавленими сторонами для вдосконалення стандартів ШІ і закликає організації продемонструвати свою прихильність до досконалості у відповідальній розро...

Вивільнення інсайтів у реальному часі: MongoDB та SageMaker Canvas революціонізують процес прийняття рішень

У статті досліджуються проблеми, з якими стикаються галузі, що не мають прогнозів у реальному часі, такі як фінанси, роздрібна торгівля, управління ланцюгами поставок та логістика. Вона висвітлює потенціал використання управління даними часових рядів MongoDB та Amazon SageMaker Canvas для подолання цих викликів та прийняття рішень на основі даних.

Підрахунок риби в греблях ГЕС: Подолання складнощів та залучення зацікавлених сторін

У цій статті досліджуються складнощі підрахунку риби, що проходить через великі греблі гідроелектростанцій, а також проблеми координації створення наборів даних за участю людини. Вона підкреслює важливість дотримання правил, встановлених Федеральною комісією з регулювання енергетики, та потенційний вплив гребель ГЕС на рибні популяції.

Виявлення аномалій: Порівняльний аналіз методів виявлення відхилень

У цій статті досліджуються алгоритми виявлення викидів у машинному навчанні та їхнє застосування до статистики бейсбольних подач Головної бейсбольної ліги 2023 року. Порівнюються чотири алгоритми: еліптична оболонка, локальний фактор викидів, однокласова машина опорних векторів зі стохастичним градієнтним спуском та ізоляційний ліс. Мета полягає в тому, щоб отримати уявлення про їхню поведінку...

Розкриття потенціалу ML: Створення рішень без коду за допомогою Amazon DocumentDB та SageMaker Canvas

Amazon оголошує про інтеграцію Amazon DocumentDB з Amazon SageMaker Canvas, що дозволяє користувачам будувати ML-моделі без кодування. Ця інтеграція дозволяє компаніям аналізувати неструктуровані дані, що зберігаються в Amazon DocumentDB, і генерувати прогнози, не покладаючись на команди інженерів даних і фахівців з науки про дані.

Сила експоненціальної ковзної середньої: Розуміння аналізу часових рядів

У цій статті досліджується логіка фундаментального алгоритму, що використовується в градієнтному спуску, зосереджуючись на експоненціальній ковзній середній. Обговорюється мотивація методу, його формула та математична інтерпретація розподілу вагових коефіцієнтів.

Оптимізація налаштувань компілятора Rust для максимальної продуктивності

У цій статті пояснюється, як проводити бенчмаркінг за допомогою критеріального ящика і як проводити бенчмаркінг з різними налаштуваннями компілятора, надається інформація про вплив на продуктивність і порівняння між процесорами. Ящик range-set-blaze використовується як приклад для вимірювання налаштувань SIMD, рівнів оптимізації та різної довжини вхідних даних.

Прискорення Rust Code за допомогою SIMD: 9 правил прискорення (частина 2)

Підвищення швидкості надходження даних в заданий діапазон в 7 разів за рахунок делегування обчислень маленьким крабам. Правило 7: Використовуйте критеріальний бенчмаркінг, щоб вибрати алгоритм і виявити, що LANES має (майже) завжди бути 32 або 64.

Розкриття можливостей RAG: покращення стабільної дифузійної підказки "текст-зображення

Перетворення тексту в зображення - це швидкозростаюча галузь ШІ, а Stable Diffusion дозволяє користувачам створювати високоякісні зображення за лічені секунди. Використання Retrieval Augmented Generation (RAG) покращує підказки для моделей Stable Diffusion, дозволяючи користувачам створювати власних ШІ-помічників для генерації підказок.

Дебати про розвідку: розкриваємо правду про ChatGPT

Новаторська мовна модель штучного інтелекту ChatGPT від OpenAI викликала захоплення своїми вражаючими здібностями, включаючи успішне складання іспитів та гру в шахи. Однак скептики стверджують, що справжній інтелект не слід плутати з запам'ятовуванням, що призвело до наукових досліджень, які вивчають цю різницю і наводять аргументи проти ШІ.

Революція в рекомендаціях по роботі: Talent.com оптимізував обробку даних за допомогою Amazon SageMaker

Talent.com співпрацює з AWS для розробки системи рекомендацій щодо роботи з використанням глибокого навчання, яка обробляє 5 мільйонів щоденних записів менш ніж за 1 годину. Система включає в себе розробку функцій, архітектуру моделі глибокого навчання, оптимізацію гіперпараметрів та оцінку моделі, і все це за допомогою Python.

Автоматизуйте попереднє маркування PDF за допомогою AWS: Оптимізуйте підготовку навчальних даних для Amazon Comprehend

Amazon Comprehend пропонує попередньо навчені та кастомні API для обробки природної мови. Вони розробили інструмент попереднього маркування, який автоматично анотує документи, використовуючи наявні дані табличних об'єктів, зменшуючи ручну роботу, необхідну для навчання точних користувацьких моделей розпізнавання об'єктів.

Створіть власний спортзал для АІ: Занурення в глибоке Q-навчання

Пориньте у світ штучного інтелекту - створіть з нуля тренажерний зал для навчання з глибоким підкріпленням. Отримайте практичний досвід і розробіть власний тренажерний зал, щоб навчити агента вирішувати прості завдання, закладаючи фундамент для більш складних середовищ і систем.

Революція в моніторингу гірничодобувного обладнання за допомогою прототипування AWS і комп'ютерного зору

ICL, міжнародна виробнича та гірничодобувна корпорація, розробила власні можливості з використанням машинного навчання та комп'ютерного зору для автоматичного моніторингу свого гірничодобувного обладнання. За підтримки програми AWS Prototyping вони змогли створити фреймворк на AWS за допомогою Amazon SageMaker для отримання зображень з 30 камер, з потенціалом масштабування до тисяч.