Новостная лента об искусственном интеллекте и машинном обучении

Главные новости и публикации каждый день! Будьте на шаг впереди: узнавайте первыми про новые идеи, тренды и инновации в сфере технологий

Google защищает спорное решение на собрании всех сотрудников

Руководство Google на недавнем собрании всех сотрудников раскрыло планы по прекращению инициатив по разнообразию и отмене обещания по борьбе с оружейным ИИ. Решение компании обновить программы обучения и участвовать в геополитических дискуссиях вызвало споры среди сотрудников.

Раскрытие возможностей LLM в оценке моделей Amazon Bedrock

Amazon Bedrock представляет LLM-as-a-judge для оценки моделей ИИ, предлагая автоматизированную и экономически эффективную оценку по нескольким метрикам. Эта инновационная функция упрощает процесс оценки, повышая надежность и эффективность ИИ для принятия обоснованных решений.

Взламывая код: Демистификация калибровки моделей

Калибровка обеспечивает соответствие прогнозов модели реальным результатам, повышая надежность. Такие меры оценки, как ожидаемая ошибка калибровки, указывают на недостатки и необходимость новых представлений о калибровке.

Раскройте возможности Meta SAM 2.1 в Amazon SageMaker JumpStart!

Meta SAM 2.1, передовая модель сегментации зрения, теперь доступна на Amazon SageMaker JumpStart для различных отраслей. Эта модель предлагает самые современные возможности обнаружения и сегментации объектов с повышенной точностью и масштабируемостью, позволяя организациям эффективно достигать точных результатов.

Расшифровка моделей фундамента

Исследователи быстро разрабатывают базовые модели ИИ: в 2023 году их будет опубликовано 149, что вдвое больше, чем в предыдущем году. Эти нейронные сети, подобно трансформаторам и большим языковым моделям, обладают огромным потенциалом для решения различных задач и имеют большую экономическую ценность.

Повышение эффективности обучения графовых нейронных сетей с помощью GraphStorm v0.4

GraphStorm v0.4 от AWS AI представляет интеграцию с DGL-GraphBolt для более быстрого обучения и вывода выводов GNN на крупномасштабных графах. Структура графа fCSC GraphBolt позволяет сократить затраты памяти до 56 %, что повышает производительность в распределенных системах.

ИИ Стармера: Карикатурная критика Роусона

Новое исследование компании Tesla свидетельствует о прогрессе в области технологий автономного вождения. Элон Маск заявил, что полностью автономные автомобили «очень близки». Компания планирует выпустить бета-версию своего программного обеспечения Full Self-Driving для избранной группы клиентов.

Упростите интеграцию корпоративных знаний с помощью Amazon Q Business

Amazon Q Business - это помощник на базе искусственного интеллекта, который упрощает интеграцию масштабных данных для предприятий, повышая эффективность и качество обслуживания клиентов. AWS Support Engineering успешно внедрила Amazon Q Business для автоматизации обработки данных, обеспечив быстрые и точные ответы на запросы клиентов.

Великобритания и США пропустили декларацию о безопасности ИИ на саммите в Париже

Джей Ди Вэнс обсуждает огромный потенциал искусственного интеллекта для экономических инноваций и национальной безопасности, подчеркивая необходимость дерегулирования для его быстрого развития. Он подчеркивает важность использования возможностей ИИ и использования потенциала технологии для создания рабочих мест и развития общества.

Путешествие во времени: четырехмерные данные в пузырьковых диаграммах

Пузырьковые диаграммы дополнены переходами между состояниями «до» и «после» для более интуитивного восприятия. Разработка решения потребовала освежить математические концепции и выбрать наиболее подходящие касательные линии.

Компании, занимающиеся разработкой искусственного интеллекта, получили преимущество в консультациях по законодательству об авторском праве Великобритании

Бибан Кидрон предупреждает, что изменения в законе об авторском праве Великобритании благоприятствуют ИИ, а не творческим индустриям, что ведет к передаче богатства технологическому сектору. Правительство рискует подорвать программу роста, предлагая обучать искусственный интеллект творческим работам.

Освоение регрессии в машинном обучении: Сравнение лучших методик

Основные методы регрессии включают линейную, k-Nearest Neighbors, Kernel Ridge, Gaussian Ridge, Neural Network, Random Forest, AdaBoost и Gradient Boosting. Эффективность каждого метода зависит от размера и сложности набора данных.

Соблюдение баланса: Данные и стратегия

Чтобы стать управляемыми данными, организации сталкиваются с проблемами эффективного использования данных, аналитики и искусственного интеллекта. Йенс, эксперт по данным, рассказывает о стратегиях, позволяющих раскрыть весь потенциал данных в различных отраслях.