Новостная лента об искусственном интеллекте и машинном обучении

Главные новости и публикации каждый день! Будьте на шаг впереди: узнавайте первыми про новые идеи, тренды и инновации в сфере технологий

Ликвидация разрыва: взгляд хирурга на ИИ в здравоохранении

В статье обсуждается растущий разрыв между клинической практикой и исследованиями ИИ в здравоохранении, подчеркивается недостаточное участие и сотрудничество врачей. В ней подчеркивается необходимость практического подхода к определению актуальных проблем и оценке того, может ли ИИ разработать лучшие решения в здравоохранении.

ИИ вдохнул новую жизнь в раннего Микки Мауса: Изучение общественного достояния

ИИ-экспериментаторы быстро воспользовались преимуществами трех ранних мультфильмов о Микки Маусе, ставших общественным достоянием в США, и использовали модель ИИ, обученную на этих мультфильмах, для создания новых неподвижных изображений Микки Мауса, Минни Маус и Пег Лег Пита. Хотя результаты иногда искажаются, эти первые эксперименты демонстрируют потенциал интеграции персонажей, являющихся о...

Ускорение на пути к светлому будущему: Новогодний город Blendeered в стиле NVIDIA

Педро Соарес (Pedro Soares), известный как Blendeered, демонстрирует свою потрясающую новогоднюю анимацию на тему NVIDIA, подчеркивая силу технологических инноваций и влияние NVIDIA Studio на создание контента. Используя Blender и графический процессор NVIDIA GeForce RTX 4090, Blendeered создает футуристическую городскую сцену с помощью рендеринга в реальном времени, трассировки лучей OptiX и ...

Усильте свои точно настроенные модели с помощью прямой оптимизации предпочтений

Повысьте производительность контролируемых моделей с тонкой настройкой, используя Reinforcement Learning from Human Feedback (RLHF) для устранения предвзятости и токсичности. NeuralHermes-2.5, настроенный с помощью прямой оптимизации предпочтений (DPO), значительно улучшает производительность базовой модели на Open LLM Leaderboard.

Раскрытие скрытой предвзятости: усовершенствование деревьев принятия решений и случайных лесов

В недавнем исследовании изучается, как деревья решений и случайные леса, широко используемые в машинном обучении, страдают от предвзятости из-за предположения о непрерывности признаков. В исследовании предложены простые методы, позволяющие уменьшить эту погрешность. Результаты показали, что при зеркальном отражении признаков эффективность ухудшается на 0,2 процентных пункта.

Раскрытие истины: тестирование оценок производительности машинного обучения с помощью mlscorecheck

В статье рассматривается использование пакета Python mlscorecheck для проверки соответствия заявленных оценок производительности машинного обучения и экспериментальных установок. Пакет mlscorecheck предоставляет численные методы для определения того, могут ли заявленные оценки быть результатом заявленного эксперимента.

Ускорение глубокого обучения: Unleashing the Power of Momentum, AdaGrad, RMSProp & Adam

В этой статье рассматриваются методы ускорения в нейронных сетях, подчеркивается необходимость более быстрого обучения в связи со сложностью моделей глубокого обучения. В ней представлена концепция градиентного спуска и отмечены ограничения, связанные с его медленной скоростью сходимости. Затем в статье представлен Momentum - алгоритм оптимизации, использующий экспоненциально скользящее средне...

Революционный музыкальный ИИ: 3 прорыва, которые стоит ожидать в 2024 году

2024 год может стать переломным моментом для музыкального ИИ благодаря прорывам в области генерации текста в музыку, музыкального поиска и чат-ботов. Однако эта область все еще отстает от речевого ИИ, и для революции в музыкальном взаимодействии с помощью ИИ необходимы достижения в области гибкого и естественного разделения источников.

Голосовой помощник: безопасное взаимодействие с локально работающим LLM

Создайте свой собственный голосовой помощник по кодированию с помощью открытой Большой языковой модели (LLM), например HuggingFace. Этот проект позволяет вам голосово взаимодействовать с LLM, сохраняя конфиденциальность своей работы.

Освоение многомасштабных графиков с помощью Matplotlib: Пошаговое руководство

Узнайте, как создавать масштабные графики в matplotlib для улучшения визуализации данных, сосредоточившись на данных о количестве осадков в Техасе. В этом учебном пособии используется подход, ориентированный на код, и рассматриваются такие события, как небольшой ливень, большой ливень и небольшие осадки.

Demystifying Principal Component Analysis (PCA) with C#: Упрощение снижения размерности для обнаружения аномалий, визуализации и машинного обучения

Анализ главных компонент (PCA) - это сложная техника, используемая для уменьшения размерности, которая включает в себя две основные методики: классическую и неклассическую. В статье обсуждаются проблемы реализации PCA с использованием классической техники и демонстрируется реализация на C# на подмножестве набора данных Iris Dataset.

Реализация ArgSort() в C#: Сортировка массивов и списков с легкостью

В статье показано, как реализовать функцию ArgSort() на языке C#, приведены примеры кода для массивов и списков. Подчеркивается наличие перегрузки C# Array.Sort(a,b), которая позволяет выполнять сортировку по значениям в массиве.

Раскрытие секретов прогнозирования урожайности и цен: Путешествие в науку о данных

В статье рассматривается студенческий проект автора по прогнозированию урожайности и цен на сельскохозяйственные культуры с использованием различных статистических методов, подчеркивается важность выбора интересующей темы. Проект получил высокий балл, и автор дает советы по созданию успешного проекта, включая проведение обзора литературы.

Эффективная инверсия матриц с помощью QR-разложения в C#

В статье рассматривается авторская реализация обратной матрицы с использованием QR-разложения и освещаются различные алгоритмы и вариации, связанные с вычислением обратной матрицы. В демонстрационном примере показано вычисление обратной матрицы 4x4 и проверка результата путем умножения на исходную матрицу для получения матрицы тождеств.

Расшифровка вероятности: Раскрытие инженерии подсказок GPT

В этой статье рассматривается механика проектирования подсказок в GPT-2, большой языковой модели. В ней рассматривается, как модель узнает о мире через проекцию человеческого текста и генерирует текст на основе вероятностных распределений.