Формула 1® (F1) сотрудничает с Amazon Web Services (AWS) для разработки решения на основе искусственного интеллекта для ускоренного решения проблем во время гонок, сокращая время решения проблем до 86 %. Специально разработанный помощник для анализа первопричин (RCA) позволяет инженерам устранять неполадки и решать критические проблемы в течение 3 дней, повышая эффективность работы.
Краткое содержание: Узнайте, как создаются и обучаются большие языковые модели (LLM). Изучите предварительное обучение, токенизацию и обучение нейронных сетей в GPT4.
Безопасность велосипедистов становится все более актуальной из-за опасных столкновений с транспортными средствами. Решение на основе машинного обучения Amazon Rekognition помогает велосипедистам распознавать близкие столкновения и способствует безопасности дорожного движения.
Узнайте, как с помощью ИИ-подсказок и LLM выполнить семантическую кластеризацию сообщений на форуме пользователей быстрее и с меньшими усилиями. В этом руководстве, вдохновленном Clio, используются общедоступные сообщения Discord для анализа разговоров о технической помощи.
Регрессия Пуассона предсказывает числовые значения для данных подсчета, используя специализированные методы и математические предположения. Демо-версия на C# генерирует синтетические пуассоновские данные и достигает высокой точности при использовании одной константы и коэффициентов.
Такие технологические гиганты, как Microsoft, Alphabet, Amazon и Meta, активно инвестируют в ИИ, напоминая «пластик» в фильме «Выпускник». Стремление к интеллекту на уровне человека ставится под сомнение ради более практичных достижений.
Поделитесь своим опытом влияния ИИ на работу, чтобы изучить текущее и будущее влияние технологий на работу. Внесите свой вклад в понимание положительного, отрицательного или смешанного влияния ИИ на рабочие роли.
Эксперты расходятся во мнениях о будущих технологических угрозах и настоящих опасностях. Мария Ресса предупреждает о негативном влиянии больших технологий на общество.
Такие достижения науки о данных, как Transformer, ChatGPT и RAG, меняют технологию. Понимание эволюции НЛП является ключевым для начинающих специалистов по работе с данными.
Проблемы бинарной классификации могут быть сложными для интерпретации из-за неоднозначности матрицы путаницы, в которой определения TP, TN, FP и FN могут различаться. Понимание этих терминов очень важно для точного анализа. Будьте осторожны при интерпретации матриц путаницы, чтобы избежать путаницы в результатах машинного обучения.
Причинно-следственные рассуждения позволяют выявить взаимосвязи в данных, избегая их неверного толкования. Понимание истории, лежащей в основе данных, очень важно для более эффективного анализа.
Инженер машинного обучения рассказывает о своем пути от студента-физика до специалиста по изучению данных, получившего первую должность после подачи заявок на 300 с лишним вакансий. Познакомился с искусственным интеллектом после просмотра документального фильма DeepMind «AlphaGo», в котором рассказывается о важности упорного труда и настойчивости.
Эрик Шмидт предупреждает, что искусственный интеллект может быть использован государствами-изгоями, такими как Северная Корея, Иран или Россия, для нанесения вреда невинным людям. Бывший генеральный директор Google опасается, что технология может быть использована для создания опасного оружия, включая биологические атаки.
Реферат: Создание эффективных наборов данных изображений для проектов по классификации изображений включает в себя определение отсечек изображений, порогов доверия и использование поэтапных/синтетических данных для улучшения работы модели. Для достижения оптимальных результатов обучения важно найти баланс между слишком малым и слишком большим количеством изображений на класс.
Вице-президент США критикует европейское регулирование на саммите AI Action Summit в Париже, предостерегая от сотрудничества с Китаем. Эммануэль Макрон признает разрушительный потенциал ИИ с помощью монтажа deepfake, подчеркивая глобальную напряженность.