Новостная лента об искусственном интеллекте и машинном обучении

Главные новости и публикации каждый день! Будьте на шаг впереди: узнавайте первыми про новые идеи, тренды и инновации в сфере технологий

Google защищает спорное решение на собрании всех сотрудников

Руководство Google на недавнем собрании всех сотрудников раскрыло планы по прекращению инициатив по разнообразию и отмене обещания по борьбе с оружейным ИИ. Решение компании обновить программы обучения и участвовать в геополитических дискуссиях вызвало споры среди сотрудников.

Освоение переменных окружения с помощью Pydantic

Разработчики используют Pydantic для безопасной работы с переменными окружения, храня их в файле .env и загружая с помощью python-dotenv. Этот метод обеспечивает конфиденциальность данных и упрощает настройку проекта для других разработчиков.

Виртуализация и контейнеры для начинающих исследователей данных

Виртуализация позволяет запускать несколько виртуальных машин на одной физической машине, что очень важно для облачных сервисов. От мейнфреймов до бессерверных систем - облачные вычисления значительно эволюционировали, оказав влияние на наше повседневное цифровое взаимодействие.

Высвобождение силы законов масштабирования в искусственном интеллекте

Законы масштабирования ИИ описывают, как различные способы применения вычислений влияют на производительность модели, что приводит к усовершенствованию моделей рассуждений ИИ и ускорению спроса на вычисления. Масштабирование при предварительном обучении показывает, что увеличение объема данных, размера модели и вычислений повышает производительность модели, стимулируя инновации в архитектуре м...

Раскрытие возможностей LLM в оценке моделей Amazon Bedrock

Amazon Bedrock представляет LLM-as-a-judge для оценки моделей ИИ, предлагая автоматизированную и экономически эффективную оценку по нескольким метрикам. Эта инновационная функция упрощает процесс оценки, повышая надежность и эффективность ИИ для принятия обоснованных решений.

Харрисон Форд освещает удар ИИ в видеоиграх

Актеры озвучивания с июля бастуют в SAG-AFTRA по поводу выступлений искусственного интеллекта в видеоиграх. В споре участвуют такие крупные издатели, как Activision Blizzard и Disney, что отразилось на таких последних играх, как Destiny 2 и Genshin Impact.

Обеспечение точности: Оценка ответов больших языковых моделей

Большие языковые модели (LLM) предсказывают слова в последовательности, выполняя такие задачи, как резюмирование текста и генерация кода. Галлюцинации в результатах LLM можно свести к минимуму с помощью методов генерации дополнений для поиска (Retrieval Augment Generation, RAG), но оценка достоверности имеет решающее значение.

Повышение скорости вывода LLM с помощью Medusa-1 на SageMaker

LLM революционизируют обработку естественного языка, но сталкиваются с проблемами задержки. Фреймворк Medusa ускоряет вывод LLM, предсказывая несколько лексем одновременно, достигая двукратного ускорения без потери качества.

Темная сторона аутсорсинга цифрового труда

Технологические компании призывают инвестировать в работников, фильтрующих данные социальных сетей для искусственного интеллекта, и уважать их. Решение Meta заменить проверку фактов заметками сообщества подверглось критике на саммите AI Action Summit в Париже, который провела Соня Кгомо.

Этические вычисления: Философский взгляд на искусственный интеллект

Профессор Массачусетского технологического института Армандо Солар-Лезама исследует извечную борьбу за контроль над машинами в золотой век генеративного ИИ. Курс «Этика вычислений» в Массачусетском технологическом институте посвящён рискам современных машин и моральной ответственности программистов и пользователей.

Освоение регрессии в машинном обучении: Сравнение лучших методик

Основные методы регрессии включают линейную, k-Nearest Neighbors, Kernel Ridge, Gaussian Ridge, Neural Network, Random Forest, AdaBoost и Gradient Boosting. Эффективность каждого метода зависит от размера и сложности набора данных.

Повышение эффективности обучения графовых нейронных сетей с помощью GraphStorm v0.4

GraphStorm v0.4 от AWS AI представляет интеграцию с DGL-GraphBolt для более быстрого обучения и вывода выводов GNN на крупномасштабных графах. Структура графа fCSC GraphBolt позволяет сократить затраты памяти до 56 %, что повышает производительность в распределенных системах.

Раскройте возможности Meta SAM 2.1 в Amazon SageMaker JumpStart!

Meta SAM 2.1, передовая модель сегментации зрения, теперь доступна на Amazon SageMaker JumpStart для различных отраслей. Эта модель предлагает самые современные возможности обнаружения и сегментации объектов с повышенной точностью и масштабируемостью, позволяя организациям эффективно достигать точных результатов.