Новостная лента об искусственном интеллекте и машинном обучении

Главные новости и публикации каждый день! Будьте на шаг впереди: узнавайте первыми про новые идеи, тренды и инновации в сфере технологий

Повышение эффективности рабочего процесса ML: Представление пространств SageMaker Studio и инструментов генеративного ИИ

Amazon SageMaker Studio теперь предлагает полностью управляемый редактор кода на базе Code-OSS, а также JupyterLab и RStudio, позволяя разработчикам ML настраивать и масштабировать свои IDE с помощью гибких рабочих пространств, называемых Spaces. Эти пространства обеспечивают постоянное хранение и конфигурации времени выполнения, повышая эффективность рабочего процесса и позволяя легко интегри...

Революционный мониторинг горного оборудования с помощью AWS-прототипирования и компьютерного зрения

ICL, международная производственная и горнодобывающая корпорация, разработала собственные возможности машинного обучения и компьютерного зрения для автоматического мониторинга своего горнодобывающего оборудования. При поддержке программы AWS Prototyping они смогли создать на AWS фреймворк с использованием Amazon SageMaker для извлечения изображения с 30 камер с возможностью масштабирования до ...

Революция в области рекомендаций вакансий: Упорядоченная обработка данных Talent.com с помощью Amazon SageMaker

Компания Talent.com в сотрудничестве с AWS разработала систему рекомендаций по работе с использованием глубокого обучения, которая обрабатывает 5 миллионов ежедневных записей менее чем за 1 час. Система включает в себя разработку функций, проектирование архитектуры модели глубокого обучения, оптимизацию гиперпараметров и оценку модели, и все это выполняется на Python.

Создайте свой собственный тренажерный зал искусственного интеллекта: Погружение в глубокое Q-обучение

Погрузитесь в мир искусственного интеллекта и создайте тренажер глубокого обучения с подкреплением с нуля. Получите практический опыт и создайте свой собственный тренажер для обучения агента решению простой задачи, заложив основу для создания более сложных сред и систем.

Автоматизируйте предварительную маркировку PDF с помощью AWS: Оптимизация подготовки учебных данных для Amazon Comprehend

Amazon Comprehend предлагает предварительно обученные и пользовательские API для обработки естественного языка. Они разработали инструмент предварительной маркировки, который автоматически аннотирует документы, используя существующие табличные данные о сущностях, сокращая ручную работу, необходимую для обучения точных пользовательских моделей распознавания сущностей.

От слов к реальности: Восхождение генерации текста в САПР

Развитие технологии преобразования текста в изображения с помощью искусственного интеллекта привело к появлению множества низкокачественных изображений, что вызвало скептицизм и неправильное понимание. Однако появился новый феномен генерации текста в САПР с помощью искусственного интеллекта, и ведущие игроки, такие как Autodesk, Google, OpenAI и NVIDIA, возглавили этот процесс.

Раскрытие скрытых закономерностей: кластеризация спектральных данных на C#

Спектральная кластеризация - это сложный метод машинного обучения, который позволяет выявить закономерности в данных. Ее реализация включает вычисление матриц сродства и Лапласиана, вложение собственных векторов и выполнение кластеризации k-means.

Экономное обучение: Эффективное обучение моделей GPT NeoX и Pythia с помощью AWS Trainium

Большие языковые модели (LLM), такие как GPT NeoX и Pythia, набирают популярность, имея миллиарды параметров и впечатляющую производительность. Обучение этих моделей на AWS Trainium является экономичным и эффективным благодаря таким оптимизациям, как вращательное позиционное встраивание (ROPE) и методы частичного вращения.

Революционная доставка на последнюю милю: Оптимизация управления трудовыми ресурсами с помощью Amazon Forecast и AWS Step Functions

Компания Getir, пионер в области сверхбыстрой доставки продуктов питания, внедрила комплексную систему управления персоналом с помощью Amazon Forecast и AWS Step Functions, что позволило на 70 % сократить время моделирования и на 90 % повысить точность прогнозирования. Этот комплексный проект рассчитывает потребности в курьерах и решает проблему распределения смен, оптимизируя графики смен и м...

Раскрытие возможностей спектральной кластеризации: Эффективные методы преобразования собственных векторов в метки кластеров

В статье рассматриваются распространенные методы кластеризации данных с акцентом на спектральную кластеризацию. Использование k-средних для вычисления кластерных меток из собственных векторов оказывается наилучшим подходом, несмотря на вариации и сложности.

Спорная функция искусственного интеллекта от Dropbox вызывает опасения по поводу конфиденциальности

Компания Dropbox столкнулась с критикой после того, как по умолчанию включила настройку, передающую данные пользователей в OpenAI для поиска с помощью искусственного интеллекта, но уверяет, что данные передаются только при активном использовании и удаляются в течение 30 дней. Генеральный директор компании Дрю Хьюстон приносит извинения за недоумение клиентов и подчеркивает, что никакие данные ...

Ускорение трансформации технологической компании Vodafone: Навыки ML с AWS DeepRacer и Accenture

К 2025 году компания Vodafone превратится в технологическую компанию, планируя, что 50 % ее сотрудников будут заниматься разработкой программного обеспечения, а 60 % цифровых услуг будут предоставляться собственными силами. Чтобы поддержать этот переход, Vodafone сотрудничает с Accenture и AWS для создания облачной платформы и участвует в конкурсе AWS DeepRacer, чтобы улучшить свои навыки маши...

Раскрытие возможностей больших языковых моделей: Путешествие с LM Studio

LM Studio - это инструмент, который позволяет локально использовать большие языковые модели, такие как GPT-x, LLaMA-x и Orca-x, предлагая чистый и интуитивно понятный пользовательский интерфейс для изучения моделей и выполнения задач рассуждения. Однако его создатель и возможные связи с другими компаниями остаются неясными.

Усовершенствование интеллектуальных помощников по работе с документами на основе RAG: Расширение аналитических возможностей с помощью Amazon Bedrock

Разговорный ИИ развивался с помощью генеративного ИИ и больших языковых моделей, но для точных ответов ему не хватает специальных знаний. Retrieval Augmented Generation (RAG) соединяет генеративные модели с внутренними базами знаний, позволяя создавать ИИ-помощников, ориентированных на конкретную область. Amazon Kendra и OpenSearch Service предлагают зрелые решения векторного поиска для реализ...

Создание интерактивных веб-интерфейсов для LLM с помощью Amazon SageMaker JumpStart

В статье рассказывается о запуске ChatGPT и росте популярности генеративного ИИ. В ней рассказывается о создании веб-интерфейса Chat Studio для взаимодействия с базовыми моделями в Amazon SageMaker JumpStart, включая Llama 2 и Stable Diffusion. Это решение позволяет пользователям быстро освоить разговорный ИИ и улучшить пользовательский опыт с помощью интеграции медиа.