Новостная лента об искусственном интеллекте и машинном обучении

Главные новости и публикации каждый день! Будьте на шаг впереди: узнавайте первыми про новые идеи, тренды и инновации в сфере технологий

Темная сторона аутсорсинга цифрового труда

Технологические компании призывают инвестировать в работников, фильтрующих данные социальных сетей для искусственного интеллекта, и уважать их. Решение Meta заменить проверку фактов заметками сообщества подверглось критике на саммите AI Action Summit в Париже, который провела Соня Кгомо.

Обеспечение точности: Оценка ответов больших языковых моделей

Большие языковые модели (LLM) предсказывают слова в последовательности, выполняя такие задачи, как резюмирование текста и генерация кода. Галлюцинации в результатах LLM можно свести к минимуму с помощью методов генерации дополнений для поиска (Retrieval Augment Generation, RAG), но оценка достоверности имеет решающее значение.

Харрисон Форд освещает удар ИИ в видеоиграх

Актеры озвучивания с июля бастуют в SAG-AFTRA по поводу выступлений искусственного интеллекта в видеоиграх. В споре участвуют такие крупные издатели, как Activision Blizzard и Disney, что отразилось на таких последних играх, как Destiny 2 и Genshin Impact.

Освоение переменных окружения с помощью Pydantic

Разработчики используют Pydantic для безопасной работы с переменными окружения, храня их в файле .env и загружая с помощью python-dotenv. Этот метод обеспечивает конфиденциальность данных и упрощает настройку проекта для других разработчиков.

Повышение скорости вывода LLM с помощью Medusa-1 на SageMaker

LLM революционизируют обработку естественного языка, но сталкиваются с проблемами задержки. Фреймворк Medusa ускоряет вывод LLM, предсказывая несколько лексем одновременно, достигая двукратного ускорения без потери качества.

Виртуализация и контейнеры для начинающих исследователей данных

Виртуализация позволяет запускать несколько виртуальных машин на одной физической машине, что очень важно для облачных сервисов. От мейнфреймов до бессерверных систем - облачные вычисления значительно эволюционировали, оказав влияние на наше повседневное цифровое взаимодействие.

Раскрытие возможностей LLM в оценке моделей Amazon Bedrock

Amazon Bedrock представляет LLM-as-a-judge для оценки моделей ИИ, предлагая автоматизированную и экономически эффективную оценку по нескольким метрикам. Эта инновационная функция упрощает процесс оценки, повышая надежность и эффективность ИИ для принятия обоснованных решений.

Google защищает спорное решение на собрании всех сотрудников

Руководство Google на недавнем собрании всех сотрудников раскрыло планы по прекращению инициатив по разнообразию и отмене обещания по борьбе с оружейным ИИ. Решение компании обновить программы обучения и участвовать в геополитических дискуссиях вызвало споры среди сотрудников.

Код Python для оценки методом моментов

Статистические выводы помогают предсказать потребности колл-центра, анализируя данные с помощью распределения Пуассона со средним значением λ = 5. Упрощает процесс оценки, концентрируясь на одном параметре.

Высвобождение силы законов масштабирования в искусственном интеллекте

Законы масштабирования ИИ описывают, как различные способы применения вычислений влияют на производительность модели, что приводит к усовершенствованию моделей рассуждений ИИ и ускорению спроса на вычисления. Масштабирование при предварительном обучении показывает, что увеличение объема данных, размера модели и вычислений повышает производительность модели, стимулируя инновации в архитектуре м...

Повышение эффективности обучения графовых нейронных сетей с помощью GraphStorm v0.4

GraphStorm v0.4 от AWS AI представляет интеграцию с DGL-GraphBolt для более быстрого обучения и вывода выводов GNN на крупномасштабных графах. Структура графа fCSC GraphBolt позволяет сократить затраты памяти до 56 %, что повышает производительность в распределенных системах.

Освоение регрессии в машинном обучении: Сравнение лучших методик

Основные методы регрессии включают линейную, k-Nearest Neighbors, Kernel Ridge, Gaussian Ridge, Neural Network, Random Forest, AdaBoost и Gradient Boosting. Эффективность каждого метода зависит от размера и сложности набора данных.

ИИ Стармера: Карикатурная критика Роусона

Новое исследование компании Tesla свидетельствует о прогрессе в области технологий автономного вождения. Элон Маск заявил, что полностью автономные автомобили «очень близки». Компания планирует выпустить бета-версию своего программного обеспечения Full Self-Driving для избранной группы клиентов.