Новостная лента об искусственном интеллекте и машинном обучении

Главные новости и публикации каждый день! Будьте на шаг впереди: узнавайте первыми про новые идеи, тренды и инновации в сфере технологий

Система предупреждения о переломном моменте в климате запускается за 81 млн фунтов стерлингов

Британский проект использует беспилотники, обнаружение космических лучей и искусственный интеллект для прогнозирования переломных моментов климата. Aria выделяет 81 млн фунтов стерлингов командам, которые ищут ранние сигналы о климатических катастрофах.

Воплощая двусмысленность

Честность в вероятностных прогнозах - ключ к тому, чтобы избежать необъективных прогнозов. Линейные правила подсчета очков могут стимулировать нечестность, что приводит к плохо откалиброванным машинным прогнозам. Книга Дэвида Шпигельхальтера подчеркивает важность штрафования за уверенные, но ошибочные убеждения для получения непредвзятых оценок.

Выявление факторов, вызывающих заболевания: Картирование метаболитов с помощью MIT Spinout

Платформа ReviveMed измеряет метаболиты, чтобы понять причины заболеваний и реакцию на лечение, заполняя пробел в анализе данных о метаболитах. Компания сотрудничает с фармацевтическими гигантами и предлагает бесплатное программное обеспечение для исследователей, чтобы они могли получить информацию из неиспользуемых данных о метаболитах.

Повышение безопасности велосипедистов с помощью Amazon Rekognition

Безопасность велосипедистов становится все более актуальной из-за опасных столкновений с транспортными средствами. Решение на основе машинного обучения Amazon Rekognition помогает велосипедистам распознавать близкие столкновения и способствует безопасности дорожного движения.

Разблокирование информации о пользователях: Семантическая кластеризация с помощью подсказок LLM

Узнайте, как с помощью ИИ-подсказок и LLM выполнить семантическую кластеризацию сообщений на форуме пользователей быстрее и с меньшими усилиями. В этом руководстве, вдохновленном Clio, используются общедоступные сообщения Discord для анализа разговоров о технической помощи.

Освоение регрессии Пуассона с помощью C#

Регрессия Пуассона предсказывает числовые значения для данных подсчета, используя специализированные методы и математические предположения. Демо-версия на C# генерирует синтетические пуассоновские данные и достигает высокой точности при использовании одной константы и коэффициентов.

Круглоголовые ИИ против королевских технологий: Битва за будущее

Такие технологические гиганты, как Microsoft, Alphabet, Amazon и Meta, активно инвестируют в ИИ, напоминая «пластик» в фильме «Выпускник». Стремление к интеллекту на уровне человека ставится под сомнение ради более практичных достижений.

Влияние искусственного интеллекта: Ваша работа трансформируется

Поделитесь своим опытом влияния ИИ на работу, чтобы изучить текущее и будущее влияние технологий на работу. Внесите свой вклад в понимание положительного, отрицательного или смешанного влияния ИИ на рабочие роли.

От нуля до инженера ML: Мой нетрадиционный путь

Инженер машинного обучения рассказывает о своем пути от студента-физика до специалиста по изучению данных, получившего первую должность после подачи заявок на 300 с лишним вакансий. Познакомился с искусственным интеллектом после просмотра документального фильма DeepMind «AlphaGo», в котором рассказывается о важности упорного труда и настойчивости.

Расшифровка ложных срабатываний: Более пристальный взгляд на путаницу в матрице путаницы

Проблемы бинарной классификации могут быть сложными для интерпретации из-за неоднозначности матрицы путаницы, в которой определения TP, TN, FP и FN могут различаться. Понимание этих терминов очень важно для точного анализа. Будьте осторожны при интерпретации матриц путаницы, чтобы избежать путаницы в результатах машинного обучения.