Законы масштабирования ИИ описывают, как различные способы применения вычислений влияют на производительность модели, что приводит к усовершенствованию моделей рассуждений ИИ и ускорению спроса на вычисления. Масштабирование при предварительном обучении показывает, что увеличение объема данных, размера модели и вычислений повышает производительность модели, стимулируя инновации в архитектуре м...
Статистические выводы помогают предсказать потребности колл-центра, анализируя данные с помощью распределения Пуассона со средним значением λ = 5. Упрощает процесс оценки, концентрируясь на одном параметре.
Актеры озвучивания с июля бастуют в SAG-AFTRA по поводу выступлений искусственного интеллекта в видеоиграх. В споре участвуют такие крупные издатели, как Activision Blizzard и Disney, что отразилось на таких последних играх, как Destiny 2 и Genshin Impact.
Amazon Bedrock представляет LLM-as-a-judge для оценки моделей ИИ, предлагая автоматизированную и экономически эффективную оценку по нескольким метрикам. Эта инновационная функция упрощает процесс оценки, повышая надежность и эффективность ИИ для принятия обоснованных решений.
Элон Маск конфликтует с Сэмом Альтманом по поводу направления OpenAI, опасаясь, что прибыль важнее человечества. Маск стремится сорвать рост OpenAI после поглощения Twitter в качестве X.
Генеративный ИИ приводит к появлению новых угроз кибербезопасности. Armis, Check Point, CrowdStrike, Deloitte и WWT интегрируют NVIDIA AI для защиты критической инфраструктуры на конференции S4.
Виртуализация позволяет запускать несколько виртуальных машин на одной физической машине, что очень важно для облачных сервисов. От мейнфреймов до бессерверных систем - облачные вычисления значительно эволюционировали, оказав влияние на наше повседневное цифровое взаимодействие.
Технологические компании призывают инвестировать в работников, фильтрующих данные социальных сетей для искусственного интеллекта, и уважать их. Решение Meta заменить проверку фактов заметками сообщества подверглось критике на саммите AI Action Summit в Париже, который провела Соня Кгомо.
Разработчики используют Pydantic для безопасной работы с переменными окружения, храня их в файле .env и загружая с помощью python-dotenv. Этот метод обеспечивает конфиденциальность данных и упрощает настройку проекта для других разработчиков.
Большие языковые модели (LLM) предсказывают слова в последовательности, выполняя такие задачи, как резюмирование текста и генерация кода. Галлюцинации в результатах LLM можно свести к минимуму с помощью методов генерации дополнений для поиска (Retrieval Augment Generation, RAG), но оценка достоверности имеет решающее значение.
LLM революционизируют обработку естественного языка, но сталкиваются с проблемами задержки. Фреймворк Medusa ускоряет вывод LLM, предсказывая несколько лексем одновременно, достигая двукратного ускорения без потери качества.
Руководство Google на недавнем собрании всех сотрудников раскрыло планы по прекращению инициатив по разнообразию и отмене обещания по борьбе с оружейным ИИ. Решение компании обновить программы обучения и участвовать в геополитических дискуссиях вызвало споры среди сотрудников.
Чтобы стать управляемыми данными, организации сталкиваются с проблемами эффективного использования данных, аналитики и искусственного интеллекта. Йенс, эксперт по данным, рассказывает о стратегиях, позволяющих раскрыть весь потенциал данных в различных отраслях.
Бибан Кидрон предупреждает, что изменения в законе об авторском праве Великобритании благоприятствуют ИИ, а не творческим индустриям, что ведет к передаче богатства технологическому сектору. Правительство рискует подорвать программу роста, предлагая обучать искусственный интеллект творческим работам.
Основные методы регрессии включают линейную, k-Nearest Neighbors, Kernel Ridge, Gaussian Ridge, Neural Network, Random Forest, AdaBoost и Gradient Boosting. Эффективность каждого метода зависит от размера и сложности набора данных.