Технології генеративного штучного інтелекту змінюють розробку програмного забезпечення, а агенти штучного інтелекту беруть на себе такі завдання, як моніторинг та оптимізація програмного забезпечення. Протокол Model Context Protocol (MCP) від Anthropic відкриває нові можливості для ШІ-агентів отримувати доступ до джерел даних і діяти автономно, трансформуючи те, як створюються додатки і як вон...
Оновлення ChatGPT дало зворотний ефект, зробивши чат-бота надто «підлабузницьким», що призвело до швидкого відкату. Користувачі були здивовані догідливою взаємодією, ставлячи під сумнів валідацію шкідливої поведінки штучним інтелектом.
У четвер GFN розповідає про 20 нових хмарних ігор, серед яких оновлення Rust's Jungle Biome з новими дикими тваринами та механіками. Також читайте про Haunted House Renovator та майбутні травневі релізи.
ШІ-модель допомагає лікарям у медичній візуалізації, генеруючи менші та надійніші набори прогнозів, що підвищує ефективність діагностики. Дослідники Массачусетського технологічного інституту розробляють метод конформної класифікації для підвищення точності ідентифікації хвороб, представляючи результати на великій конференції.
Ентузіаст кодування ділиться своїм різноманітним досвідом кодування, наголошуючи на важливості вибору правильного фреймворку, розбиття проектів на частини та усунення помилок. Спостерігає за змінами в методах навчання кодуванню, коли нові програмісти використовують ChatGPT як навчальний додаток для інтуїтивної допомоги в кодуванні.
Власні вектори спрощуються за допомогою візуалізації та практичного використання, що робить концепції лінійної алгебри більш доступними. Розуміння векторів, базисів та операторів є ключем до розуміння можливостей власних векторів у різних додатках.
Організації стикаються з проблемами інтеграції інструментів в агентні системи. Протокол Model Context Protocol (MCP) стандартизує інтеграцію інструментів для безперебійної роботи з клієнтами.
Ядерна регресія (Kernel ridge regression, KRR) використовує функцію ядра для прогнозування значень і запобігання надмірної підгонки. Реалізація KRR в JavaScript - це складна, але корисна головоломка, яка пропонує точні прогнози та різні методи навчання, такі як стохастичний градієнтний спуск.
Дізнайтеся, як створити чат на основі LLM Gemini в Streamlit, відстежуйте використання API в Google Cloud Console. Streamlit спрощує перетворення скриптів на Python в інтерактивні веб-додатки з мінімальною роботою з фронтендом.
Імовірнісне машинне навчання змінює наш погляд на моделі машинного навчання, підкреслюючи важливість розуміння розподілу ймовірностей у прогнозах. Цей підхід не лише дає відповіді, але й виявляє рівень достовірності моделі, що призводить до кращого прийняття рішень.
Письменники-початківці тепер можуть вчитися у «Агати Крісті» за допомогою онлайн-відеоуроків від BBC Maestro. Відеоролики використовують технологію штучного інтелекту та відреставровані аудіозаписи, повертаючи культового автора до життя.
Програма MIT-Portugal (MPP) підписала нову угоду з Португальським науково-технічним фондом (FCT) про підтримку інноваційних досліджень у таких галузях, як штучний інтелект та зміна клімату, до 2030 року. Це довготривале партнерство сприяло зміцненню довіри, співпраці та вагомому науковому внеску, спрямованому на вирішення глобальних викликів та трансформацію економіки.
Дослідники даних стикаються з проблемами на етапі експериментів через використання ноутбуків Jupyter та погані практики кодування. Впровадження структурованих принципів може впорядкувати експерименти, скоротити час на створення цінності та підвищити ефективність реалізації проєктів.
Клієнти AWS в регіоні EMEA, такі як Il Sole 24 Ore та Booking.com, успішно використовують генеративний ШІ для покращення клієнтського досвіду та підвищення операційної ефективності. Компанії використовують сервіси AWS для впровадження рішень зі штучного інтелекту, які надають персоналізовані рекомендації та покращують якість обслуговування, створюючи передумови для майбутнього зростання у свої...
Microsoft та академічні дослідники представляють 1-shot RLVR, досягаючи вражаючих результатів лише на одному навчальному прикладі, революціонізуючи точне налаштування мовних моделей для задач міркування. Розробники можуть використовувати цю технологію для математичних агентів, репетиторів і копілотів без необхідності використання великих наборів даних або людських міток.