Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Темна сторона аутсорсингу цифрової праці

Технологічні компанії закликали інвестувати в працівників, які фільтрують дані соціальних мереж для ШІ, і поважати їх. Рішення Meta замінити фактчекінг коментарями спільноти розкритикувала Соня Кгомо на AI Action Summit у Парижі.

Віртуалізація та контейнери для початківців у науці про дані

Віртуалізація дозволяє запускати кілька віртуальних машин на одному фізичному комп'ютері, що має вирішальне значення для хмарних сервісів. Від мейнфреймів до безсерверних хмарних обчислень хмарні технології значно еволюціонували, впливаючи на нашу повсякденну цифрову взаємодію.

Забезпечення точності: Оцінювання відповідей великих мовних моделей

Великі мовні моделі (ВММ) передбачають слова в послідовності, виконуючи такі завдання, як узагальнення тексту та генерація коду. Галюцинації у результатах LLM можна мінімізувати за допомогою методів генерації пошукових доповнень (Retrieval Augment Generation, RAG), але оцінка достовірності має вирішальне значення.

Підвищіть швидкість LLM-виведення за допомогою Medusa-1 на SageMaker

LLM революціонізують обробку природної мови, але стикаються з проблемами затримок. Фреймворк Medusa прискорює виведення LLM, передбачаючи кілька токенів одночасно, досягаючи прискорення в 2 рази без втрати якості.

Спростіть інтеграцію корпоративних знань з Amazon Q Business

Amazon Q Business - це асистент на основі штучного інтелекту, який спрощує великомасштабну інтеграцію даних для підприємств, підвищуючи ефективність та якість обслуговування клієнтів. AWS Support Engineering успішно впровадила Amazon Q Business для автоматизації обробки даних, забезпечуючи швидкі та точні відповіді на запити клієнтів.

Відкрийте для себе можливості Meta SAM 2.1 у Amazon SageMaker JumpStart!

Meta SAM 2.1, передова модель сегментації зору, тепер доступна на Amazon SageMaker JumpStart для різних галузей. Ця модель пропонує найсучасніші можливості виявлення та сегментації об'єктів з підвищеною точністю та масштабованістю, що дозволяє організаціям ефективно досягати точних результатів.

Подорож у часі: 4-вимірні дані у бульбашкових діаграмах

Бульбашкові діаграми доповнені переходами між станами «до» і «після» для більш інтуїтивного сприйняття користувачем. Розробка рішення включала в себе оновлення математичних концепцій та вибір найбільш підходящих дотичних ліній.

Освоюємо регресію в машинному навчанні: Порівняння найкращих методів

Основні методи регресії: лінійний, k-найближчих сусідів, ядрового хребта, гауссового хребта, нейронної мережі, випадкового лісу, AdaBoost та градієнтного бустингу. Ефективність кожного методу залежить від розміру та складності набору даних.

Етичні обчислення: Філософські погляди на штучний інтелект

Професор Массачусетського технологічного інституту Армандо Солар-Лезама досліджує вікову боротьбу за контроль над машинами в золотий вік генеративного ШІ. Курс «Етика комп'ютерних технологій» в Массачусетському технологічному інституті заглиблюється в ризики сучасних машин та моральну відповідальність програмістів і користувачів.

Розшифровка фундаментальних моделей

Дослідники швидко розробляють базові моделі ШІ: у 2023 році їх було опубліковано 149, що вдвічі більше, ніж у попередньому році. Ці нейронні мережі, подібно до трансформаторів і великих мовних моделей, пропонують величезний потенціал для виконання різноманітних завдань і мають велику економічну цінність.

Прискорення навчання графових нейронних мереж за допомогою GraphStorm v0.4

GraphStorm v0.4 від AWS AI впроваджує інтеграцію з DGL-GraphBolt для швидшого навчання ШНМ та висновків на великомасштабних графах. Структура графів fCSC GraphBolt зменшує витрати пам'яті на 56%, підвищуючи продуктивність у розподілених середовищах.

Моделі Falcon 3: Вивільнення потужності за допомогою Amazon SageMaker JumpStart

Моделі Falcon 3 від TII в Amazon SageMaker JumpStart пропонують найсучасніші мовні моделі з параметрами до 10B. Досягаючи найсучаснішої продуктивності, вони підтримують різні додатки і можуть бути зручно розгорнуті за допомогою інтерфейсу користувача або Python SDK.

Досягнення балансу: Дані та стратегія

Щоб стати керованими даними, організації стикаються з проблемами ефективного використання даних, аналітики та штучного інтелекту. Дженс, експерт з даних, окреслює стратегії для розкриття повного потенціалу даних у різних галузях.