На нещодавніх зборах керівники Google оголосили про плани покласти край ініціативам щодо різноманітності та відкликати обіцянку не використовувати штучний інтелект на озброєнні. Рішення компанії оновити навчальні програми та брати участь у геополітичних дискусіях викликало суперечки серед працівників.
Віртуалізація дозволяє запускати кілька віртуальних машин на одному фізичному комп'ютері, що має вирішальне значення для хмарних сервісів. Від мейнфреймів до безсерверних хмарних обчислень хмарні технології значно еволюціонували, впливаючи на нашу повсякденну цифрову взаємодію.
Ілон Маск конфліктує з Семом Альтманом щодо керівництва OpenAI, побоюючись, що прибуток буде важливішим за людяність. Маск прагне зупинити зростання OpenAI після поглинання Twitter під назвою X.
LLM революціонізують обробку природної мови, але стикаються з проблемами затримок. Фреймворк Medusa прискорює виведення LLM, передбачаючи кілька токенів одночасно, досягаючи прискорення в 2 рази без втрати якості.
Статистичний висновок допомагає спрогнозувати потреби кол-центру, аналізуючи дані за допомогою розподілу Пуассона із середнім значенням λ = 5. Спрощує процес оцінки, фокусуючись на одному параметрі.
Закони масштабування ШІ описують, як різні способи застосування обчислень впливають на продуктивність моделі, що призводить до вдосконалення моделей міркувань ШІ та прискорення попиту на обчислення. Масштабування перед навчанням показує, що збільшення даних, розміру моделі та обчислень покращує продуктивність моделі, стимулюючи інновації в архітектурі моделі та навчання майбутніх потужних моде...
Amazon Bedrock представляє програму LLM-as-a-judge для оцінки моделей штучного інтелекту, пропонуючи автоматизовану, економічно ефективну оцінку за кількома показниками. Ця інноваційна функція спрощує процес оцінювання, підвищуючи надійність та ефективність ШІ для прийняття обґрунтованих рішень.
Дослідники швидко розробляють базові моделі ШІ: у 2023 році їх було опубліковано 149, що вдвічі більше, ніж у попередньому році. Ці нейронні мережі, подібно до трансформаторів і великих мовних моделей, пропонують величезний потенціал для виконання різноманітних завдань і мають велику економічну цінність.
Бульбашкові діаграми доповнені переходами між станами «до» і «після» для більш інтуїтивного сприйняття користувачем. Розробка рішення включала в себе оновлення математичних концепцій та вибір найбільш підходящих дотичних ліній.
Основні методи регресії: лінійний, k-найближчих сусідів, ядрового хребта, гауссового хребта, нейронної мережі, випадкового лісу, AdaBoost та градієнтного бустингу. Ефективність кожного методу залежить від розміру та складності набору даних.
Amazon Q Business - це асистент на основі штучного інтелекту, який спрощує великомасштабну інтеграцію даних для підприємств, підвищуючи ефективність та якість обслуговування клієнтів. AWS Support Engineering успішно впровадила Amazon Q Business для автоматизації обробки даних, забезпечуючи швидкі та точні відповіді на запити клієнтів.
GraphStorm v0.4 від AWS AI впроваджує інтеграцію з DGL-GraphBolt для швидшого навчання ШНМ та висновків на великомасштабних графах. Структура графів fCSC GraphBolt зменшує витрати пам'яті на 56%, підвищуючи продуктивність у розподілених середовищах.
Щоб стати керованими даними, організації стикаються з проблемами ефективного використання даних, аналітики та штучного інтелекту. Дженс, експерт з даних, окреслює стратегії для розкриття повного потенціалу даних у різних галузях.
Моделі Falcon 3 від TII в Amazon SageMaker JumpStart пропонують найсучасніші мовні моделі з параметрами до 10B. Досягаючи найсучаснішої продуктивності, вони підтримують різні додатки і можуть бути зручно розгорнуті за допомогою інтерфейсу користувача або Python SDK.
Швидкість має вирішальне значення для обробки даних у хмарних сховищах даних, впливаючи на витрати, своєчасність даних і контури зворотного зв'язку. Тест на порівняння швидкості між Polars і Pandas має на меті дослідити вимоги до продуктивності та забезпечити прозорість для потенційних користувачів.