NVIDIA Isaac GR00T Blueprint прискорює розробку людиноподібних роботів завдяки синтетичним даним про рух. Платформа Cosmos скорочує розрив між симуляцією та реальністю для інновацій у сфері фізичного ШІ.
NVIDIA Media2 використовує ШІ для трансформації створення та доставки контенту в медіаіндустрії, залишаючись на передовій завдяки таким технологіям, як NVIDIA Holoscan та архітектура Blackwell. NVIDIA AI Enterprise пропонує ряд мікросервісів для розширення можливостей ШІ в робочих процесах медіакомпаній.
Система штучного інтелекту може запропонувати ідеальних молодих гравців з конкретними якостями, які бажають бачити футбольні менеджери, що потенційно підвищить результативність команди. Технологи стверджують, що менеджери можуть бажати гравців з такими рисами, як агресивність Ерлінга Халанда або врівноваженість Джуда Беллінгема, що робить цю систему спортивною лампою Аладдіна.
Ролі аналітиків даних розширюються і включають в себе не лише розробку моделей, але й навички їхнього розгортання. Дізнайтеся, як розгортати ML-моделі за допомогою FastAPI та Docker для промислових API.
Персонажі штучного інтелекту Meta, зокрема «горда чорношкіра квір-мама», викликали вірусне обговорення перед тим, як їх видалили. Незважаючи на попередні видалення, компанія планує представити більше профілів персонажів зі штучним інтелектом.
Основні оновлення в етиці ШІ на 2024 рік включають прорив у інтерпретації LLM від Anthropic, дизайн ШІ, орієнтований на людину, і нове законодавство в галузі ШІ, таке як Закон ЄС про ШІ і закони Каліфорнії, спрямовані на боротьбу з глибокими фейками і дезінформацією. Фокус на зрозумілому ШІ та розширенні можливостей людини, а також евристики для оцінки законодавства у сфері ШІ є ключовими моме...
Глибоке навчання відмінно справляється з виявленням викидів для зображень, відео та аудіо даних, але має проблеми з табличними даними. Традиційні методи все ще переважають у виявленні відхилень у табличних даних, проте глибоке навчання дає надію на подальший прогрес.
Джеффрі Хінтон, «хрещений батько» штучного інтелекту, висвітлює боротьбу розумних істот з менш розумними. Розвиток ШІ вимагає реалістичного розуміння того, що ми не можемо контролювати як розумні, так і нерозумні сили, як це видно з поточних подій, таких як пандемія коронавірусу.
Новий інструмент моделювання поєднує відбір ознак з регресією для подолання обмежень та забезпечення узгодженої оцінки параметрів. Такі методи, як регресія Лассо та байєсівський відбір змінних, спрямовані на оптимізацію продуктивності моделі шляхом відбору релевантних змінних та точної оцінки коефіцієнтів.
Дослідники з Массачусетського технологічного інституту розробили методику, що використовує великі мовні моделі для точного прогнозування структури антитіл, допомагаючи у визначенні потенційних методів лікування інфекційних захворювань, таких як SARS-CoV-2. Цей прорив може заощадити гроші фармацевтичних компаній, гарантуючи вибір правильних антитіл для клінічних випробувань, а також може бути в...
Дослідження Маттео Буччі про кипіння, що має вирішальне значення для електростанцій, охолодження електроніки тощо, може призвести до прориву у виробництві енергії та запобігти ядерним катастрофам. Його інноваційний підхід до вивчення явища кипіння має потенціал для революції у багатьох галузях промисловості.
Освоюємо Sensor Fusion: Аналіз виявлення перешкод за даними KITTI з використанням кольорових зображень. Глибоке занурення в детектори об'єктів YoloWorld та YoloV8 для аналізу наборів даних KITTI.
ШІ та прискорені обчислення NVIDIA трансформують галузі по всьому світу - від допомоги хірургам за допомогою 3D моделей до очищення океанів за допомогою керованих ШІ човнів. Ці інновації революціонізують охорону здоров'я, енергоефективність, збереження навколишнього середовища та технологічний прогрес в Африці.
Професор Джеффрі Хінтон попереджає, що штучний інтелект може перевершити людський, що викликає побоювання за майбутнє людства. Навіщо прагнути до чогось «дуже страшного»?
Інструменти рефлексивного генеративного ШІ, такі як GitHub Copilot та Devin. ai, автоматизують розробку програмного забезпечення з метою створення автономних платформ. Стратегія Doctor-Patient в інструментах GenAI розглядає кодові бази як пацієнтів, революціонізуючи процес автоматизації.