Стаття: «Регресія на основі дерева рішень з нуля за допомогою C#» представляє демонстрацію реалізації регресії на основі дерева рішень без рекурсії та вказівників. Точність моделі на навчальних даних є високою, але надмірне припасування є проблемою, яку вирішують за допомогою ансамблевих методів.
Нобелівський лауреат з економіки Дарон Ачемоглу досліджує вплив ШІ на економічне зростання і продуктивність, оцінюючи скромне збільшення ВВП від 1,1 до 1,6 відсотка протягом наступного десятиліття. Дослідження показує, що близько 20-23% робочих завдань у США можуть бути автоматизовані за допомогою ШІ, а потенційна економія витрат становитиме 27%.
Трамп призначив Девіда Сакса, колишнього головного операційного директора PayPal, на посаду керівника відділу штучного інтелекту та криптовалюти Білого дому, нагороджуючи великих донорів політичною владою. Сакс, інсайдер Кремнієвої долини, організував збір коштів, який приніс понад 12 мільйонів доларів для кампанії Трампа.
Організації використовують навчальні плани Amazon SageMaker HyperPod для доступу до прискорених обчислювальних ресурсів для налаштування великих мовних моделей, підвищуючи ефективність моделей у різних секторах. Це рішення вирішує проблему забезпечення надійних обчислювальних потужностей для навчання моделей, пропонуючи масштабовані та економічно ефективні варіанти для організацій, які прагнут...
Автоматизація наукової кодової документації за допомогою GPT для оптимізації робочих процесів. Мета: Ефективний і послідовний перехід від коду до комплексних документів.
Генеративний ШІ, особливо Retrieval Augmented Generation (RAG), трансформує галузі, надаючи персоналізований досвід за допомогою зовнішніх джерел знань. Додатки RAG на Amazon SageMaker JumpStart з використанням Facebook AI Similarity Search (FAISS) оптимізують результати роботи генеративного ШІ з економічною вигодою та швидшою ітерацією.
Система штучного інтелекту, що використовується урядом Великобританії для виявлення шахрайства з соціальними виплатами, демонструє упередженість на основі віку, інвалідності, сімейного стану, національності. Внутрішня оцінка показує, що певні групи мають більше шансів потрапити під слідство у справах про шахрайство.
Навчіться спілкуватися з зображеннями за допомогою Llama 3.2-Vision, найсучаснішої мультимодальної LLM від Meta. Вивчіть її можливості розпізнавання тексту та міркувань на ноутбуці Colab для локального виконання.
Стівен Моффат і Рассел Т Девіс застерігають від надмірного використання ШІ в креативних індустріях, побоюючись зниження якості. Різдвяний спецвипуск «Доктора Хто» на BBC1 залишається довгоочікуваною подією для фанатів.
Створіть універсального LLM-агента для різних сценаріїв використання. Виберіть правильну модель і визначте логіку управління для оптимальної продуктивності та адаптивності.
Профілювання клієнтів розвивається завдяки векторним рекомендаціям на основі зразків, як-от Pinterest's Pinnersage, що пропонують користувачеві індивідуальний вибір. Ці алгоритми спрощують рекомендації, перетворюючи зразки на вектори, покращуючи залучення користувачів.
Інженери Массачусетського технологічного інституту випустили DrivAerNet++ - набір даних з 8000 проектів автомобілів для ШІ, щоб швидко покращити аеродинаміку автомобілів, скоротивши витрати на дослідження та розробки. Цей набір даних може призвести до створення більш економних автомобілів та електромобілів з більшим запасом ходу, прискорюючи автомобільні інновації для сталого майбутнього.
Звіт попереджає, що бум ШІ принесе користь технологічним гігантам, але творцям загрожує втрата доходів без політичного втручання. Музичний сектор втратить 25% доходу, аудіовізуальний сектор - понад 20%, оскільки ринок генеративного ШІ зросте до 64 млрд євро до 2028 року.
ШІ-програма GenCast від Google DeepMind перевершила прогноз ENS від ECMWF, передбачивши погоду та шляхи ураганів на 20% точніше. GenCast пропонує швидші та точніші щоденні прогнози погоди, що є багатообіцяючою розробкою для моніторингу погоди.
Массачусетський технологічний інститут справив значний вплив на COP16, продемонструвавши дослідження біорізноманіття та взявши участь у ключових дискусіях щодо глобальних цілей. Програма ESI NCS підтримала коаліції латиноамериканських міст у просуванні цілей KMGBF за допомогою різномасштабних дій та природоохоронних зусиль на рівні громад.