Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Розгадка таємниці зворотного розповсюдження: Пояснення повної похідної

Резюме: Ця стаття прояснює хибні уявлення про зворотне поширення, пояснюючи повну похідну та вводячи правило векторного ланцюжка для спрощення складних обчислень у нейронних мережах. Впровадження векторних обчислень у рівняннях зворотного поширення оптимізує обчислення градієнтів для всіх ваг у шарі одночасно, підвищуючи ефективність навчання моделей.

Штучний інтелект: кінець людської значущості?

Лабораторії штучного інтелекту готуються до змови ШІ проти людей, але реальна загроза полягає в тому, що ШІ робить людину застарілою в усіх аспектах життя. ШІ може замінити людину в економічному, культурному та соціальному плані, змусивши нас замислитися над нашим місцем у світі, де ШІ робить все краще.

Книги про СДУГ зі штучним інтелектом на Amazon: Небезпечна нісенітниця

Amazon несе етичну відповідальність за те, щоб запобігти появі написаних чат-ботами книг на делікатні теми, як-от боротьба зі синдромом дефіциту уваги та гіперактивності. Роботи, створені штучним інтелектом, наповнюють ринок оманливою інформацією - від путівників до книг про збирання грибів.

Азартна гра технологічних олігархів з високими ставками

Технологічні мільярдери, такі як Маск і Безос, завжди мали ультраправі лібертаріанські переконання, а не раптову політичну зміну. Ідеологія Кремнієвої долини завжди підтримувала необмежену владу технологічних олігархів, незважаючи на зовнішні прояви.

Освоєння агентного ШІ: ваш посібник зі створення ШІ-агентів

Майбутнє науки про дані лежить у площині генеративного штучного інтелекту. Агенти штучного інтелекту тепер можуть робити більше, ніж просто спілкуватися, наприклад, планувати зустрічі та шукати інформацію в інтернеті.

Скоротіть витрати на MongoDB на 79% завдяки налаштуванню Shape-First

SaaS заощадив 79% на хмарних рахунках і зменшив затримку з 1,9 с до 140 мс за 48 годин, оптимізувавши запити та документи. Вони виправили N + 1 водоспад, приборкали необмежені курсори та розділили великі документи, скоротивши витрати з $15 284 до $3 210 на місяць.

ШІ, натхненний мозком: нова модель нейронної динаміки

Дослідники з Массачусетського технологічного інституту розробили LinOSS, стабільну модель ШІ, натхненну нейронними коливаннями, яка перевершує існуючі моделі в аналізі довгих послідовностей. LinOSS пропонує ефективні прогнози для різних сфер, від аналітики в галузі охорони здоров'я до фінансового прогнозування, поєднуючи біологічне натхнення з обчислювальними інноваціями.

Перетворіть свої кластери за допомогою DeepType

DeepType використовує нейронні мережі для кластеризації, виділяючи значущу структуру з даних для більш глибокого аналізу та прогнозування. Навчаючись на релевантних для задачі представленнях, DeepType підвищує точність кластеризації та виявляє цінні ідеї, як, наприклад, при групуванні пацієнтів на основі генетичних даних для покращення кореляції показників виживання.

Розширення можливостей спілкування з афазією за допомогою WordFinder

QARC та AWS співпрацювали над розробкою WordFinder, мобільного додатку, який допомагає людям з афазією, створюючи списки слів на основі зображень. Додаток допомагає заповнити прогалини у спілкуванні, пропонуючи пов'язані слова, що відповідають поширеним методам терапії афазії.

Нескінченність розв'язана

Норми L¹ та L² відіграють різну роль у моделях ШІ, впливаючи на точність та узагальненість. Розуміння їхніх відмінностей має вирішальне значення в таких завданнях, як генерація зображень GAN.

Опанування графів знань з магістрами права

Графи знань пов'язують концепції, сутності та зв'язки для підвищення продуктивності LLM у пошуку інформації. GraphRAG використовує графове представлення знань для покращення міркувань LLM за межами традиційних векторних підходів, дозволяючи міркувати на рівні міждокументного рівня для більш ефективного пошуку інформації.

Опанування LLM зі схемами прийняття рішень зі штучним інтелектом

Агенти штучного інтелекту обіцяють автоматизувати завдання, але людський контроль залишається важливим через високий рівень помилок. Впровадження схем прийняття рішень ШІ з надмірністю може підвищити точність агентних процесів.