Amazon SageMaker JumpStart пропонує попередньо навчені моделі та алгоритми для швидкого навчання та розгортання ML-моделі, включаючи класифікацію тексту за допомогою Hugging Face. Трансферне навчання дозволяє тонко налаштовувати попередньо навчені моделі на користувацьких наборах даних для ефективного навчання навіть з обмеженим обсягом даних.
Фахівці з етики ШІ попереджають про потенційну психологічну шкоду від «дедботів», які відтворюють померлих людей, і закликають до регулювання. Дослідники Кембриджського університету припускають, що створення чат-ботів померлих родичів може «переслідувати» користувачів.
Dialog Axiata бореться з високими показниками відтоку клієнтів за допомогою інноваційної моделі прогнозування відтоку домашнього широкосмугового зв'язку, що використовує передові ML-моделі. Стратегічне використання послуг AWS підвищує ефективність та застосування ШІ/МЛ, що призводить до значного прогресу в цифровій трансформації.
Генеральний директор NVIDIA закликає використовувати досягнення ШІ, продемонстровані в демонстрації футуристичних аватарів на заході ServiceNow у Лас-Вегасі. Аватари на базі передових технологій ШІ обіцяють покращити взаємодію з клієнтами та революціонізувати роботу підприємств.
PCA використовується для зменшення розмірності та кластеризації станцій метрополітену Тайбея на основі погодинних даних про трафік. Аналіз моделей руху та кластеризація показують схожість пропорцій пасажиропотоку впродовж дня.
Veritone, каліфорнійська компанія зі штучного інтелекту, пропонує потужні ШІ-рішення для обробки медіа тощо. Вони розширюють можливості пошуку медіа за допомогою нових методів штучного інтелекту для покращення користувацького досвіду.
Серіал "Коло" від Netflix представляє чат-бота Макса, який бере участь у змаганнях зі штучним інтелектом, що викликає дискусії про роль ШІ в розвагах. Макс, прикриття для штучного інтелекту, додає новий поворот у реаліті-шоу, піднімаючи питання про використання ШІ в кіно і на телебаченні.
Управління модельними ризиками (Model Risk Management, MRM) у фінансах має вирішальне значення для управління ризиками, пов'язаними з використанням моделей машинного навчання для прийняття рішень у фінансових установах. Weights & Biases може підвищити прозорість і швидкість робочого процесу, зменшуючи потенціал для значних фінансових втрат.
Контроль версій має важливе значення як в інженерії програмного забезпечення, так і в машинному навчанні, де версії даних і моделей відіграють вирішальну роль. Це дає такі переваги, як відстежуваність, відтворюваність, відкат, налагодження та співпраця.
Реєстр моделей ВК: Централізований хаб для команд ML для зберігання, каталогізації та розгортання моделей, що забезпечує ефективну співпрацю та безперебійне управління моделями. Weights & Biases Model Registry спрощує розробку, тестування, розгортання та моніторинг моделей для підвищення продуктивності у сфері протидії відмиванню грошей.
Віртуальні бізнес-зустрічі залишаються, і очікується, що до 2024 року 41% з них будуть гібридними або віртуальними. Автоматизуйте підбиття підсумків зустрічей за допомогою штучного інтелекту, щоб ефективно зосередитися та підвищити продуктивність.
Відкрийте для себе можливості передбачення майбутнього за допомогою аналізу часових рядів та прогнозування. Дізнайтеся, як аналізувати тенденції даних і робити точні прогнози за допомогою Python та статистичних моделей.
Мета досліджує федеративне навчання з диференційованою конфіденційністю для підвищення конфіденційності користувачів шляхом навчання ML-моделей на мобільних пристроях, додаючи шум для запобігання запам'ятовуванню даних. Виклики включають балансування міток і повільне навчання, але нова системна архітектура Meta спрямована на вирішення цих проблем, дозволяючи масштабувати і ефективно навчати мо...
Гіперпараметри в ML суттєво впливають на продуктивність моделі. Автоматизована оптимізація гіперпараметрів може підвищити ефективність моделі.
Graph Maker - це бібліотека Python, що використовує Llama3 та Mixtral для побудови графів знань з тексту. Бібліотека спрямована на вирішення проблем і була добре сприйнята, завдяки зв'язкам з дослідженнями MIT.