Штучний інтелект може маніпулювати рішеннями, оскільки компанії конкурують за прогнозування людської поведінки на ринку «економіки намірів». Дослідники Кембриджського університету показують, як інструменти штучного інтелекту прогнозують і продають людські наміри компаніям, що прагнуть отримати прибуток.
Великі мовні моделі трансформували корпорації, а «агенти» зі штучним інтелектом вийдуть на перший план у 2025 році. Ці інтелектуальні системи, керовані магістрами права, здатні розуміти цілі та здійснювати осмислені дії, як людина, пропонуючи допомогу у виконанні повсякденних завдань.
Покращуйте міжпродуктові інсайти за допомогою пакету dbtsetsimilarity. Розраховуйте індекс Jaccard для аналізу моделей прийняття продуктів у багатопродуктових компаніях.
Пурніма Рамарао ставить під сумнів спроможність поліції Сан-Франциско проводити розслідування після загадкової смерті свого сина Сучіра Баладжі. Друзі збираються на віче в Мілпітас, штат Каліфорнія, щоб вшанувати колишнього дослідника і викривача OpenAI.
Лінійна регресія може обробляти нелінійні дані, використовуючи скінченні нормальні суміші. Цей підхід забезпечує гнучкість та інтерпретованість, що робить його потужним інструментом машинного навчання. Моделювання моделі суміші для регресії з вибіркою MCMC показує, як відновлювати компоненти за допомогою байєсівського висновку.
OpenAI планує створити суспільно корисну корпорацію для управління своїм зростаючим бізнесом, щоб послабити обмеження, накладені її неприбутковою материнською компанією. Компанія, відома завдяки ChatGPT, шукає більше капіталу, ніж очікувалося, що викликало чутки про перехід до комерційної моделі.
Джеффрі Хінтон попереджає про 10-20% ймовірність того, що штучний інтелект може призвести до вимирання людства через 30 років через швидкий технологічний прогрес. Нобелівський лауреат висловлює занепокоєння прискореними темпами змін у сфері штучного інтелекту.
Ілон Маск зіткнувся з прихильниками Трампа через вибір радника зі штучного інтелекту Шрірама Крішнана, що викликало імміграційні дебати на базі Maga. Маск і Вівек Рамасвамі протистоять Лорі Лумер і Метту Гаетцу в запеклій ворожнечі.
Малі мовні моделі (МММ) набувають все більшої популярності як економічно ефективна альтернатива великим моделям. Вони пропонують підвищену точність, знижену вартість і більший контроль над даними, що робить їх привабливим варіантом для компаній, які прагнуть оптимізувати продуктивність.
У великих мовних моделях використовується м'яка максимальна увага, але вона вимагає значних обчислень. Лінійна увага пропонує рішення, яке зменшує складність до O(Nd²).
Розуміння функцій втрат має вирішальне значення для навчання нейронних мереж. Перехресна ентропія допомагає кількісно оцінити відмінності в розподілі ймовірностей, що допомагає у виборі моделі.
Аналітики Deutsche Bank підкреслюють потенційний вплив штучного інтелекту на продуктивність праці в найближчі 25 років. Державний борг США стрімко зріс з 1999 року, і, за прогнозами, до 2050 року співвідношення боргу до ВВП становитиме 160%.
Генеративний ШІ може додати 2,6-4,4 трильйона доларів до глобальної вартості, а AWS побачить сплеск корпоративних додатків. Дізнайтеся, як оптимізувати витрати на генеративний ШІ на Amazon Bedrock за допомогою вибору моделі та стратегій використання токенів.
Тести Guardian показали, що пошуковий інструмент ChatGPT від OpenAI може повертати неправдиві/шкідливі результати з прихованим текстом, що викликає занепокоєння з приводу безпеки. Користувачів попередили про потенційні ризики, пов'язані з новим пошуковим продуктом на основі штучного інтелекту.
Компанії скорочують витрати, доопрацьовуючи LLM за допомогою методів PEFT, таких як LoRA. SageMaker HyperPod від AWS спрощує розподілене навчання для ефективної розробки ШІ.