Дослідники Массачусетського технологічного інституту та лабораторії штучного інтелекту MIT-IBM Watson AI Lab розробляють революційний мультимодальний підхід з використанням великих мовних моделей та графових моделей для оптимізації дизайну молекул, що дозволяє підвищити рівень успішності з 5% до 35%. Ця інноваційна методика може автоматизувати весь процес проектування та синтезу молекул, що по...
Організації застосовують мульти-LLM-підхід до генеративних додатків ШІ, що дозволяє створювати більш універсальні та ефективні моделі, пристосовані до конкретних завдань і вимог. Впровадження ефективної мульти-LLM-маршрутизації є ключем до спрямування підказок користувача до потрібного LLM для різноманітних випадків використання, від генерації тексту до складного аналізу, в різних галузях знань.
Amazon Q Business пропонує допомогу на основі штучного інтелекту для підвищення ефективності роботи персоналу за рахунок скорочення часу, витраченого на виконання завдань. Завдяки надійним функціям безпеки та детальній аналітиці організації можуть вимірювати підвищення продуктивності та оптимізувати використання для досягнення максимального ефекту.
Банк Англії попереджає, що програми штучного інтелекту можуть маніпулювати ринками з метою отримання прибутку, посилаючись на ризики у звіті про автономні системи. Здатність штучного інтелекту використовувати можливості викликає занепокоєння у банків і трейдерів, повідомляє комітет з фінансової політики.
Catboost представляє новий метод обчислення цільової статистики для категоріальних змінних, що дозволяє уникнути таких проблем, як розрідженість і проблеми з пам'яттю. Замінюючи одномоментне кодування на згладжене середнє, Catboost надає практичне рішення для реальних задач.
Потреба в енергії для центрів обробки даних зі штучним інтелектом зросте в чотири рази до 2030 року
МЕА прогнозує різке зростання енергетичних потреб ШІ, але применшує вплив на клімат. До 2030 року обробка даних для ШІ в США може перевищити споживання енергії у важкій промисловості.
Використання правил в управлінні продуктами може допомогти боротися з шахрайством та утримувати вигідних клієнтів. Впровадження статичних правил може бути швидшим, більш зрозумілим і відповідним вимогам у таких галузях, як фінанси та охорона здоров'я.
ML-моделі повинні працювати у виробничому середовищі, яке може відрізнятися від локальної машини. Контейнери Docker допомагають забезпечити запуск моделей будь-де, покращуючи відтворюваність та співпрацю для науковців з даних.
Дональд Трамп підписує укази про стимулювання вугільної промисловості, викликаючи критику з боку екологів за ігнорування рішень щодо чистої енергії. Цей крок розглядається як задоволення попиту на електроенергію для центрів обробки даних, штучного інтелекту та електромобілів, але критики називають його регресивним.
Організації звертаються до синтетичних даних, щоб орієнтуватися на правила конфіденційності та дефіцит даних при розробці ШІ. Amazon Bedrock пропонує безпечну, відповідну вимогам і високоякісну генерацію синтетичних даних для різних галузей, вирішуючи проблеми та розкриваючи потенціал процесів, керованих даними.
Трансформаторні LLM просунулися у виконанні завдань, але залишаються чорними скриньками. Нова стаття Anthropic про трасування ланцюгів має на меті розкрити внутрішню логіку LLM для інтерпретації.
Австралійська команда відроджує американського композитора Елвіна Люсьєра, викликаючи дискусії про штучний інтелект та авторство. Моторошна, красива симфонія, створена без участі живих музикантів.
Автоматизовані моделі оцінки (AVM) використовують штучний інтелект для прогнозування вартості житла, але невизначеність може призвести до дорогих помилок. AVMU кількісно оцінює надійність прогнозів, допомагаючи приймати більш розумні рішення при купівлі нерухомості.
Штучний інтелект у креативних індустріях порівнюють з фортепіано, потенціал штучного інтелекту в мистецтві ставлять під сумнів. Листівка Reform UK критикує збір сміття, пропонує наймати більше ботаніків для місцевих служб.
Amazon Bedrock тепер пропонує кешування підказок з моделями Claude 3.5 Haiku та Claude 3.7 Sonnet від Anthropic, що зменшує затримку до 85% та витрати на 90%. Позначайте певні частини підказок, які потрібно кешувати, оптимізуючи обробку вхідних токенів і максимізуючи економію коштів.