Стаття: «Регресія на основі дерева рішень з нуля за допомогою C#» представляє демонстрацію реалізації регресії на основі дерева рішень без рекурсії та вказівників. Точність моделі на навчальних даних є високою, але надмірне припасування є проблемою, яку вирішують за допомогою ансамблевих методів.
Профілювання клієнтів розвивається завдяки векторним рекомендаціям на основі зразків, як-от Pinterest's Pinnersage, що пропонують користувачеві індивідуальний вибір. Ці алгоритми спрощують рекомендації, перетворюючи зразки на вектори, покращуючи залучення користувачів.
Массачусетський технологічний інститут справив значний вплив на COP16, продемонструвавши дослідження біорізноманіття та взявши участь у ключових дискусіях щодо глобальних цілей. Програма ESI NCS підтримала коаліції латиноамериканських міст у просуванні цілей KMGBF за допомогою різномасштабних дій та природоохоронних зусиль на рівні громад.
Amazon Bedrock Model Distillation забезпечує високу точність менших, економічно ефективних моделей штучного інтелекту завдяки перенесенню знань з передових моделей. Ця функція автоматизує процес, забезпечуючи ефективність, оптимізацію витрат і розширену кастомізацію для різних сценаріїв використання.
Стівен Моффат і Рассел Т Девіс застерігають від надмірного використання ШІ в креативних індустріях, побоюючись зниження якості. Різдвяний спецвипуск «Доктора Хто» на BBC1 залишається довгоочікуваною подією для фанатів.
ШІ-програма GenCast від Google DeepMind перевершила прогноз ENS від ECMWF, передбачивши погоду та шляхи ураганів на 20% точніше. GenCast пропонує швидші та точніші щоденні прогнози погоди, що є багатообіцяючою розробкою для моніторингу погоди.
Інженери Массачусетського технологічного інституту випустили DrivAerNet++ - набір даних з 8000 проектів автомобілів для ШІ, щоб швидко покращити аеродинаміку автомобілів, скоротивши витрати на дослідження та розробки. Цей набір даних може призвести до створення більш економних автомобілів та електромобілів з більшим запасом ходу, прискорюючи автомобільні інновації для сталого майбутнього.
Створіть універсального LLM-агента для різних сценаріїв використання. Виберіть правильну модель і визначте логіку управління для оптимальної продуктивності та адаптивності.
Дослідники з Массачусетського технологічного інституту розробили методику під назвою Score Distillation, яка дозволяє створювати високоякісні 3D-форми з 2D-моделей генерації зображень, покращуючи реалістичність без дорогого перенавчання. Цей прорив розширює потенціал ШІ для допомоги дизайнерам у створенні реалістичних 3D-моделей, представлений на Конференції з нейронних систем обробки інформації.
Звіт попереджає, що бум ШІ принесе користь технологічним гігантам, але творцям загрожує втрата доходів без політичного втручання. Музичний сектор втратить 25% доходу, аудіовізуальний сектор - понад 20%, оскільки ринок генеративного ШІ зросте до 64 млрд євро до 2028 року.
Amazon SageMaker оголошує про оновлення інструментарію для оптимізації висновків, включаючи спекулятивне декодування та квантування FP8 для швидшої оптимізації генеративних моделей ШІ. Інтеграція з NVIDIA TensorRT-LLM для підвищення продуктивності та скорочення часу розгортання, що полегшує досягнення найкращих у своєму класі результатів за лічені години.
Регресія AdaBoost поєднує в собі слабкі методи навчання, такі як дерево рішень, k-NN та лінійна регресія. Результати показують, що нейронна мережа є найкращою за точністю прогнозування.
Тім знайшов розраду в ChatGPT, використовуючи його як щоденник, щоб зорієнтуватися у своїх проблемах у шлюбі з Джилл. Чат-бот допоміг йому зрозуміти їхні розбіжності та керувати емоційними реакціями.
Розробник ChatGPT визнав помилку у позначенні імені, що спричинило галас у соціальних мережах через інцидент з Девідом Майєром.
NVIDIA представляє професійні сертифікати для фахівців з інфраструктури та операцій ШІ, пропонуючи структуровані шляхи для вдосконалення навичок. Сертифікати надають фахівцям передові навички роботи з інфраструктурою та операціями ШІ, що покращують перспективи кар'єрного росту.