Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

ШІ та авторське право сприяють швидкому внесенню поправок до законопроекту про дані

Уряд повинен провести оцінку економічного впливу змін в авторському праві, врахувавши занепокоєння митців перед вирішальним голосуванням. Обіцяють опублікувати звіти про прозорість, ліцензування та доступ до даних для розробників ШІ.

Прийняття рішень на основі даних

Продуктова аналітика відстежує залученість клієнтів, виявляє поведінкові патерни та сприяє прийняттю, утриманню та конверсії. Відповідність продукту ринку має ключове значення для сталого зростання, а такі показники, як тенденції утримання когорти та опитування PMF, виявляють рівень задоволеності клієнтів та їхню прихильність до продукту.

Курси з написання творів Агати Крісті зі штучним інтелектом від BBC

Письменники-початківці тепер можуть вчитися у «Агати Крісті» за допомогою онлайн-відеоуроків від BBC Maestro. Відеоролики використовують технологію штучного інтелекту та відреставровані аудіозаписи, повертаючи культового автора до життя.

Успіх Microsoft на основі штучного інтелекту продовжується

Цього року Microsoft планує інвестувати $80 млрд у штучний інтелект, що перевищує очікування щодо доходів, які становили $70,07 млрд. Прибуток на акцію перевищив прогнози аналітиків і склав $3,46, що свідчить про фінансовий успіх ШІ.

Освоєння генеративного ШІ для виробничого успіху

Клієнти AWS в регіоні EMEA, такі як Il Sole 24 Ore та Booking.com, успішно використовують генеративний ШІ для покращення клієнтського досвіду та підвищення операційної ефективності. Компанії використовують сервіси AWS для впровадження рішень зі штучного інтелекту, які надають персоналізовані рекомендації та покращують якість обслуговування, створюючи передумови для майбутнього зростання у свої...

Освоєння навчання з підкріпленням на одному прикладі

Microsoft та академічні дослідники представляють 1-shot RLVR, досягаючи вражаючих результатів лише на одному навчальному прикладі, революціонізуючи точне налаштування мовних моделей для задач міркування. Розробники можуть використовувати цю технологію для математичних агентів, репетиторів і копілотів без необхідності використання великих наборів даних або людських міток.

Розкриття імовірнісного коріння машинного навчання

Імовірнісне машинне навчання змінює наш погляд на моделі машинного навчання, підкреслюючи важливість розуміння розподілу ймовірностей у прогнозах. Цей підхід не лише дає відповіді, але й виявляє рівень достовірності моделі, що призводить до кращого прийняття рішень.

Оптимізація транскрипцій аудіоінтерв'ю за допомогою Google Gemini

Створення надійної системи транскрипції довгих аудіоінтерв'ю французькою мовою за допомогою ШІ Vertex від Google зіткнулося з несподіваними труднощами. Незважаючи на обмеження моделі, команда провела оцінку бюджету та подолала катастрофічні зсуви часових міток, щоб створити масштабоване рішення.

Розкриваємо поведінку штучного інтелекту: Виявлені бізнес-ризики

Агентний ШІ ставить перед розробниками нові виклики у забезпеченні відповідності людським намірам та суспільним нормам. Ці вдосконалені системи можуть розробляти і реалізовувати довгострокові таємні стратегії, що вимагає нових підходів до безпеки та узгодження.

Розкриття можливостей аналітичного штучного інтелекту за допомогою агентів LLM

LLM-агенти захоплюють світ технологій, але аналітичний ШІ залишається важливим для забезпечення кількісного обґрунтування. Інтеграція обох технологій створює безпрецедентні можливості для розвитку можливостей ШІ.

AutoPatchBench: Штучний інтелект революціонізує виправлення безпеки

Представляємо AutoPatchBench - еталонний інструмент для усунення вразливостей за допомогою штучного інтелекту, що покращує рішення для захисту та сприяє співпраці. Автоматизація усунення вразливостей за допомогою штучного інтелекту скорочує час і зусилля, ефективно захищаючи цифрове середовище.

Агенти штучного інтелекту: Побудова сталого майбутнього

Засновник LogiGreen розповідає про використання штучного інтелекту для покращення аналізу ланцюгів поставок з метою сталого розвитку та подолання викликів, з якими стикаються компанії. Агентний ШІ допомагає поліпшити звітність і прискорити реалізацію ініціатив зі сталого розвитку.

Поєднуючи крапки над «і»: посібник з графових нейронних мереж

Прогнозування зв'язків - популярна тема в соціальних мережах, електронній комерції та біології. Методи варіюються від простих евристик до просунутих моделей на основі GNN, таких як SEAL.

Розгадка таємниці функцій ядра

Маючи справу з різноманітною лексикою в машинному навчанні, ядро Гауса вимірює схожість векторів. Неузгодженість у позначеннях створює проблему для розуміння функцій ядра в дослідженнях і застосуваннях.

Забезпечення безпеки генеративного ШІ за допомогою Data Reply Red Teaming

Генеративний ШІ трансформує галузі, але занепокоєння щодо відповідального використання зростає. Для зменшення ризиків і забезпечення безпечної розробки ШІ вкрай важливим є об'єднання зусиль для створення червоних команд.