Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Віртуалізація та контейнери для початківців у науці про дані

Віртуалізація дозволяє запускати кілька віртуальних машин на одному фізичному комп'ютері, що має вирішальне значення для хмарних сервісів. Від мейнфреймів до безсерверних хмарних обчислень хмарні технології значно еволюціонували, впливаючи на нашу повсякденну цифрову взаємодію.

Google захистив суперечливе рішення на загальних зборах колективу

На нещодавніх зборах керівники Google оголосили про плани покласти край ініціативам щодо різноманітності та відкликати обіцянку не використовувати штучний інтелект на озброєнні. Рішення компанії оновити навчальні програми та брати участь у геополітичних дискусіях викликало суперечки серед працівників.

Вивільнення сили законів масштабування в ШІ

Закони масштабування ШІ описують, як різні способи застосування обчислень впливають на продуктивність моделі, що призводить до вдосконалення моделей міркувань ШІ та прискорення попиту на обчислення. Масштабування перед навчанням показує, що збільшення даних, розміру моделі та обчислень покращує продуктивність моделі, стимулюючи інновації в архітектурі моделі та навчання майбутніх потужних моде...

Забезпечення точності: Оцінювання відповідей великих мовних моделей

Великі мовні моделі (ВММ) передбачають слова в послідовності, виконуючи такі завдання, як узагальнення тексту та генерація коду. Галюцинації у результатах LLM можна мінімізувати за допомогою методів генерації пошукових доповнень (Retrieval Augment Generation, RAG), але оцінка достовірності має вирішальне значення.

Розкриття можливостей LLM в оцінці моделі Amazon Bedrock

Amazon Bedrock представляє програму LLM-as-a-judge для оцінки моделей штучного інтелекту, пропонуючи автоматизовану, економічно ефективну оцінку за кількома показниками. Ця інноваційна функція спрощує процес оцінювання, підвищуючи надійність та ефективність ШІ для прийняття обґрунтованих рішень.

Темна сторона аутсорсингу цифрової праці

Технологічні компанії закликали інвестувати в працівників, які фільтрують дані соціальних мереж для ШІ, і поважати їх. Рішення Meta замінити фактчекінг коментарями спільноти розкритикувала Соня Кгомо на AI Action Summit у Парижі.

Гаррісон Форд привертає увагу до проблеми штучного інтелекту у відеоіграх

З липня актори озвучення в SAG-AFTRA страйкують через використання штучного інтелекту у відеоіграх. У суперечці беруть участь такі великі видавці, як Activision Blizzard і Disney, що вплинуло на останні ігри, такі як Destiny 2 і Genshin Impact.

Освоюємо регресію в машинному навчанні: Порівняння найкращих методів

Основні методи регресії: лінійний, k-найближчих сусідів, ядрового хребта, гауссового хребта, нейронної мережі, випадкового лісу, AdaBoost та градієнтного бустингу. Ефективність кожного методу залежить від розміру та складності набору даних.

Відкрийте для себе можливості Meta SAM 2.1 у Amazon SageMaker JumpStart!

Meta SAM 2.1, передова модель сегментації зору, тепер доступна на Amazon SageMaker JumpStart для різних галузей. Ця модель пропонує найсучасніші можливості виявлення та сегментації об'єктів з підвищеною точністю та масштабованістю, що дозволяє організаціям ефективно досягати точних результатів.

Розшифровка фундаментальних моделей

Дослідники швидко розробляють базові моделі ШІ: у 2023 році їх було опубліковано 149, що вдвічі більше, ніж у попередньому році. Ці нейронні мережі, подібно до трансформаторів і великих мовних моделей, пропонують величезний потенціал для виконання різноманітних завдань і мають велику економічну цінність.

Зламування коду: Демістифікація калібрування моделі

Калібрування забезпечує відповідність прогнозів моделі реальним результатам, підвищуючи надійність. Такі оціночні показники, як очікувана похибка калібрування, вказують на недоліки і потребу в нових поняттях калібрування.

Прискорення навчання графових нейронних мереж за допомогою GraphStorm v0.4

GraphStorm v0.4 від AWS AI впроваджує інтеграцію з DGL-GraphBolt для швидшого навчання ШНМ та висновків на великомасштабних графах. Структура графів fCSC GraphBolt зменшує витрати пам'яті на 56%, підвищуючи продуктивність у розподілених середовищах.

Розширення прав і можливостей дівчат в освіті зі штучного інтелекту

Тара Чкловскі та Аншита Саїні з Technovation обговорюють розширення прав і можливостей дівчат у всьому світі через освіту в галузі штучного інтелекту, вирішення реальних проблем та інклюзивні ініціативи в галузі ШІ. Дізнайтеся про можливості наставництва в сезоні 2025 року та технологічні досягнення на конференції NVIDIA GTC.