Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Розблокування доступу до облікового запису Azure Storage

Розсекречено мережевий доступ до облікового запису Azure Storage: Дізнайтеся про кінцеві точки служб і приватні кінцеві точки для безпечного обміну даними в корпоративних озерах даних. Дізнайтеся про Azure Backbone, брандмауер облікового запису сховища, VNET, NSG та інші засоби надійного захисту.

Легка k-NN регресія в C# без зусиль

Регресія k-найближчих сусідів прогнозує значення, знаходячи найближчих сусідів у навчальних даних, досягаючи точності 79,50% у демо-версії. На відміну від інших методів, k-NN регресія не створює математичну модель, використовуючи навчальні дані як саму модель.

Оптимізуйте обробку документів за допомогою Amazon Bedrock Prompt Flows

Інтелектуальна обробка документів (IDP) на базі AI/ML революціонізує обробку документів у виробничій, фінансовій та медичній галузях. Amazon Bedrock Prompt Flows забезпечує масштабоване, економічно ефективне та автоматизоване вилучення та обробку даних з документів за допомогою безсерверних технологій та керованих сервісів.

Танці зі штучним інтелектом: стрибок у майбутнє

Танцювальна постановка Lilith.Aeon від AΦE, керована штучним інтелектом, кидає виклик традиційним танцювальним нормам за допомогою виконавця зі штучним інтелектом. Хореографи Накамура та Лекок мають на меті покращити розповідь за допомогою захоплюючих вражень від ШІ, віртуальної та доповненої реальності.

Посилення трансформаторів: Сила передових позиційних вбудовувань

Трансформаторна архітектура покращує продуктивність моделі, вирішуючи проблеми довгострокових залежностей за допомогою механізму самоуваги. Позиційні вбудовування кодують структуру послідовності, покращуючи здатність моделі розуміти порядок у даних.

Ключове розуміння даних за межами штучного інтелекту

Відвідування конференцій з питань даних та спілкування зі спільнотою має вирішальне значення для вдосконалення навичок аналітики. Стримування витрат і рентабельність інвестицій в дані є важливими аспектами управління даними, що впливають на ефективність і бюджет аналітичних команд.

Зламати код: Python та рівняння

Розв'язки в замкненій формі досліджуються в дуелі між Python та італійською математикою епохи Відродження. Дізнайтеся, коли рівняння можна розв'язати і як обманути, використовуючи SymPy для знаходження виразів у замкненому вигляді. Дізнайтеся, які рівняння протистоять закритим розв'язкам, а також які комбінації слід уникати.

Програма постдокторантури зі штучного інтелекту в Массачусетському технологічному інституті прискорює міждисциплінарні інновації

Шварцманівський комп'ютерний коледж Массачусетського технологічного інституту розпочинає програму постдокторських стипендій Tayebati, яка зосереджується на застосуванні штучного інтелекту в наукових дослідженнях та музиці. Програма, що отримала грант у розмірі 20 мільйонів доларів, має на меті розширити можливості найкращих постдоків для проведення міждисциплінарних досліджень та співпраці.

Розблокування потужності штучного інтелекту: Запуск STORM з локальними документами

Стенфордська система штучного інтелекту STORM використовує LLM-агентів для складних дослідницьких завдань, перевершуючи традиційні методи. Опитування показало, що 70% редакторів Вікіпедії вважають STORM корисним для досліджень перед написанням статей.

Революція в навчанні роботів

Дослідники Массачусетського технологічного інституту розробили методику навчання універсальних роботів з використанням величезної кількості різноманітних джерел даних. Цей метод перевершив традиційні методи більш ніж на 20% в симуляціях і реальних експериментах, що свідчить про його перспективність для більш ефективного та результативного навчання роботів.

Подолання бар'єрів у математичному мисленні

Резюме: Стаття на тему міркувань LLM ставить під сумнів математичні можливості ШІ-моделей, виявляючи варіабельність продуктивності. Не всі моделі демонструють однакові результати, що вказує на потенційні проблеми забруднення даних і потребу в синтетичних даних.

Пастки конфіденційності: Межі мінімізації даних

Принцип мінімізації даних у машинному навчанні наголошує на зборі лише необхідних даних для зменшення ризиків конфіденційності. Для оптимального захисту даних в усьому світі передбачено обмеження цілей та релевантності даних.

Жорстоке поводження з дітьми за допомогою штучного інтелекту: Чоловіка засуджено до 18 років

27-річний Х'ю Нельсон з Болтона засуджений до 18 років за використання штучного інтелекту для створення зображень насильства над дітьми з реальних дитячих фотографій. Це перше кримінальне переслідування такого роду у Великій Британії після розслідування, проведеного поліцією Великого Манчестера.