Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Розблокування міжрегіонального висновку в середовищі з декількома обліковими записами на Amazon Bedrock

Amazon Bedrock пропонує міжрегіональний висновок для ШІ-моделей, але суворий контроль доступу може обмежити його функціональність. Дізнайтеся, як змінити елементи керування, щоб увімкнути безперебійне міжрегіональне виведення та підвищити продуктивність, на практичних прикладах. Ця функція оптимізує використання ресурсів і продуктивність за рахунок автоматичної маршрутизації трафіку між кілько...

Відеорозмови

Великі мовні моделі (ВММ) тепер можуть обробляти текст, зображення та аудіо, відкриваючи нові можливості в освіті та бізнесі. gpt-4o - це перша справжня мультимодальна ВММ, що дозволяє природно взаємодіяти з відеоконтентом і створювати персоналізовані навчальні матеріали.

Освоєння нейромережевої квантильної регресії на C#

Стаття: «Нейромережева квантильна регресія з використанням C#». Унікальним підходом до регресії машинного навчання є квантильна регресія, особливо корисна для сценаріїв зі значними наслідками недопрогнозування. Використовуючи спеціальну функцію втрат, нейромережева квантильна регресія має на меті передбачити значення до заданого квантиля, пропонуючи перспективний метод точного прогнозування.

Максимізуйте ефективність моделі за допомогою Amazon Bedrock

Amazon Bedrock спрощує створення високоякісних категоріальних базових даних для моделей ML, скорочуючи витрати і час. Використовуючи XML-теги, він створює збалансований набір даних міток, як показано на реальному прикладі прогнозування категорій допоміжних кейсів.

Плавання з Морським консорціумом Массачусетського технологічного інституту

Морський консорціум MIT має на меті скоротити викиди парникових газів у морському судноплавстві за допомогою інноваційних технологій та міждисциплінарних досліджень. Очолюваний професорами Массачусетського технологічного інституту Сапсісом і Крістією, консорціум включає ключових гравців галузі та зосереджується на таких сферах, як ядерні технології, автономна робота, кібербезпека та 3D-друк дл...

Amazon SageMaker JumpStart: Приватний модельний хаб отримує підтримку з тонкого налаштування

Amazon SageMaker JumpStart пропонує заздалегідь підготовлені моделі та нові можливості для безпечного створення, управління та налаштування моделей ML. Покращені функції приватного хабу дозволяють підприємствам балансувати між стандартизацією та кастомізацією для успішного впровадження ШІ.

Готель мрії: Читання думок штучним інтелектом

У потужному романі-антиутопії, номінованому на Жіночу премію, Сара Хуссейн потрапляє до в'язниці за те, що може вчиняти злочини за допомогою системи безпеки зі штучним інтелектом. Попри те, що Сара - звичайна музейна архівістка, її «оцінка ризику» призводить до того, що вона потрапляє до жіночої в'язниці, де її доля перебуває в руках охоронців.

Невизначеність у машинному навчанні на Python

ML Uncertainty: пакет Python для вирішення проблеми відсутності кількісної оцінки невизначеності в популярному програмному забезпеченні ML. Призначений для оцінки невизначеностей у прогнозах за допомогою лише кількох рядків коду, що робить його недорогим в обчислювальному плані і застосовним до реальних сценаріїв з обмеженими даними.

Оптимізуйте аналітику ланцюжка поставок за допомогою AI-агентів в n8n

Data Scientist досліджує LangChain та LangGraph для створення агентів штучного інтелекту. Використання n8n для легкого розгортання диспетчерської вежі на базі штучного інтелекту в аналітиці ланцюгів поставок.

Революція в ігровому дизайні за допомогою штучного інтелекту на Amazon Bedrock

Генеративний ШІ на чолі з моделлю SD3.5 Large від Stability AI трансформує створення ігрового середовища завдяки високоякісній генерації різноманітних зображень. Ця інновація прискорює цикли проектування і дає користувачам можливість створювати захоплюючі віртуальні світи, обіцяючи нову еру ігрової творчості за допомогою ШІ.

Розкриття ролі інженерів машинного навчання

Інженер з машинного навчання пояснює свою роль: навчання, розгортання моделей та необхідні навички. Робочий процес включає ідеї, дані, дослідження та аналіз для вдосконалення моделей і створення цінності.

Покращення розпізнавання ШІ за допомогою екстрактора морфологічних ознак

PawMatchAI на основі штучного інтелекту може ідентифікувати 124 породи собак, аналізуючи структуровані ознаки, такі як пропорції тіла та текстура шерсті, на основі людських методів експертного розпізнавання. На відміну від традиційних CNN, ця модель відокремлює ключові характеристики для більш чіткої інтерпретації, революціонізуючи ідентифікацію порід на основі АІ.

23andMe: Подорож на американських гірках

23andMe подає заяву про банкрутство, генеральний директор йде у відставку після невдалих спроб викупу. Виникає занепокоєння щодо долі накопичених генетичних даних. Маск жонглює Tesla, політикою на тлі розпродажу акцій і відкликання Cybertruck.

Зв'язок самотності: Важкі користувачі ChatGPT

Згідно з дослідженнями OpenAI та Массачусетського технологічного інституту, емоційна взаємодія з ChatGPT призводить до інтенсивнішого використання та меншої кількості стосунків поза мережею. Активні користувачі ChatGPT, як правило, більш самотні та емоційно залежні від інструменту штучного інтелекту.

Ідеальна посадка: Сила найменших квадратів

Метод найменших квадратів має важливе значення в машинному навчанні для мінімізації середньоквадратичної помилки. Норма L2 забезпечує плавність і зручність обчислень при оптимізації лінійної регресії.