Amazon Bedrock тепер пропонує кешування підказок з моделями Claude 3.5 Haiku та Claude 3.7 Sonnet від Anthropic, що зменшує затримку до 85% та витрати на 90%. Позначайте певні частини підказок, які потрібно кешувати, оптимізуючи обробку вхідних токенів і максимізуючи економію коштів.
Автоматизовані моделі оцінки (AVM) використовують штучний інтелект для прогнозування вартості житла, але невизначеність може призвести до дорогих помилок. AVMU кількісно оцінює надійність прогнозів, допомагаючи приймати більш розумні рішення при купівлі нерухомості.
Навчання еволюційної оптимізації для Kernel Ridge Regression є перспективним, але обмежується точністю 90-93% через проблеми з масштабуванням. Традиційна матрична інверсна техніка перевершує за точністю та швидкістю.
NVIDIA висвітлює досягнення фізичного ШІ під час Національного тижня робототехніки, демонструючи технології, що формують інтелектуальні машини в різних галузях. IEEE відзначає дослідників NVIDIA за новаторську роботу в області масштабованого навчання роботів, навчання з підкріпленням у реальному світі та втіленого ШІ.
Нове коло зі штучним інтелектом від Meta у WhatsApp викликає страх і лють серед користувачів, викликаючи занепокоєння щодо приватності та стеження в метапросторі. Користувачі запитують, чи не торгують вони мимоволі своїми даними заради зручності, наголошуючи на важливості читання умов та положень.
Автори критикують Meta за використання їхніх творів для навчання ШІ, але хіба творчість не будується на ідеях минулого? Приклади Мак'юена та Орвелла показують, що митці завжди черпали натхнення в інших. Видавничу індустрію звинувачують у тому, що вона випускає книжки-копії, які імітують успішні тренди.
Lumi, австралійський фінтех-кредитор, використовує Amazon SageMaker AI для надання швидких кредитних рішень з точною кредитною оцінкою. Вони поєднують машинне навчання з людськими судженнями для ефективного і точного управління ризиками.
Мова радіологів може вводити в оману - нове дослідження Массачусетського технологічного інституту показує надмірну самовпевненість при використанні таких термінів, як «дуже ймовірно» проти «можливо». Розроблено рамки для підвищення точності повідомлень радіологів про патології, що сприятиме покращенню лікування пацієнтів.
Інструмент діагностики ШІ затримується; Ніцца повільно оцінюється. Виділено риторику уряду проти реальності. Розширено скринінг раку кишечника.
Справи про порушення авторських прав у США проти OpenAI і Microsoft, в яких фігурують такі автори, як Та-Нехісі Коутс і Джон Грішем, були об'єднані в Нью-Йорку для підвищення ефективності. Централізація має на меті впорядкувати розгляд справ і уникнути непослідовних рішень, незважаючи на спротив авторів і ЗМІ.
Великі мовні моделі (ВММ) можуть бути точно налаштовані за допомогою навчання з підкріпленням на основі зворотного зв'язку від людини для узгодження з уподобаннями користувача. Цей метод, відомий як супервирівнювання, дозволяє LLM налаштовувати параметри безпосередньо до наборів даних, оминаючи потребу в послугах людського анотування.
Компанії переходять з OpenAI на Amazon Nova, щоб отримати економічно ефективні моделі штучного інтелекту з ширшими можливостями. Amazon Nova пропонує різні моделі, такі як Pro, Lite і Micro, кожна з яких оптимізована для різних застосувань з меншими витратами та вищою ефективністю.
Amazon Bedrock Evaluations тепер пропонує загальний доступ до функцій оцінювання LLM-as-a-judge та RAG, а також нові можливості BYOI для зовнішніх систем RAG. Нові метрики цитування дають глибше розуміння точності та релевантності системи RAG, оптимізуючи продуктивність та якість ШІ.
Агенти штучного інтелекту в роздрібній торгівлі надають персоналізований досвід, збагачують знання про товари та пропонують багатоканальну підтримку, переосмислюючи досвід покупок завдяки безшовній інтеграції та можливостям віртуальної примірки. Згідно з останнім звітом NVIDIA, рітейлери, які використовують ШІ, надають перевагу гіперперсоналізованим рекомендаціям для збільшення онлайн-продажів...
Інтерпретація моделі машинного навчання може бути складним завданням. Експеримент показав, що вік і дохід мають найбільший вплив на прогнозування політичних уподобань.