Продуктова аналітика відстежує залученість клієнтів, виявляє поведінкові патерни та сприяє прийняттю, утриманню та конверсії. Відповідність продукту ринку має ключове значення для сталого зростання, а такі показники, як тенденції утримання когорти та опитування PMF, виявляють рівень задоволеності клієнтів та їхню прихильність до продукту.
Уряд повинен провести оцінку економічного впливу змін в авторському праві, врахувавши занепокоєння митців перед вирішальним голосуванням. Обіцяють опублікувати звіти про прозорість, ліцензування та доступ до даних для розробників ШІ.
Amazon Q Business - це асистент зі штучним інтелектом, який безпечно виконує завдання на основі корпоративних даних. Тепер підтримує анонімний доступ користувачів до публічних веб-сайтів і порталів, пропонуючи потужну допомогу, керовану ШІ.
Універсальна теорема про апроксимацію розкриває можливості нейронної мережі з одним прихованим шаром. Hugging Face демонструє понад мільйон попередньо навчених моделей, підкреслюючи потребу в різноманітних мережевих архітектурах.
Цього року Microsoft планує інвестувати $80 млрд у штучний інтелект, що перевищує очікування щодо доходів, які становили $70,07 млрд. Прибуток на акцію перевищив прогнози аналітиків і склав $3,46, що свідчить про фінансовий успіх ШІ.
Microsoft та академічні дослідники представляють 1-shot RLVR, досягаючи вражаючих результатів лише на одному навчальному прикладі, революціонізуючи точне налаштування мовних моделей для задач міркування. Розробники можуть використовувати цю технологію для математичних агентів, репетиторів і копілотів без необхідності використання великих наборів даних або людських міток.
Генеративні AI-рішення, такі як Amazon Bedrock, трансформують галузі, надаючи організаціям можливість використовувати базові моделі для інноваційних AI-додатків. FloQast, маючи понад 2800 клієнтів, оптимізує бухгалтерські операції за допомогою рішень на основі штучного інтелекту на Amazon Bedrock, вирішуючи складні завдання в масштабах.
LLM-агенти захоплюють світ технологій, але аналітичний ШІ залишається важливим для забезпечення кількісного обґрунтування. Інтеграція обох технологій створює безпрецедентні можливості для розвитку можливостей ШІ.
Прогнозування зв'язків - популярна тема в соціальних мережах, електронній комерції та біології. Методи варіюються від простих евристик до просунутих моделей на основі GNN, таких як SEAL.
Маючи справу з різноманітною лексикою в машинному навчанні, ядро Гауса вимірює схожість векторів. Неузгодженість у позначеннях створює проблему для розуміння функцій ядра в дослідженнях і застосуваннях.
Засновник LogiGreen розповідає про використання штучного інтелекту для покращення аналізу ланцюгів поставок з метою сталого розвитку та подолання викликів, з якими стикаються компанії. Агентний ШІ допомагає поліпшити звітність і прискорити реалізацію ініціатив зі сталого розвитку.
Створення надійної системи транскрипції довгих аудіоінтерв'ю французькою мовою за допомогою ШІ Vertex від Google зіткнулося з несподіваними труднощами. Незважаючи на обмеження моделі, команда провела оцінку бюджету та подолала катастрофічні зсуви часових міток, щоб створити масштабоване рішення.
Представляємо AutoPatchBench - еталонний інструмент для усунення вразливостей за допомогою штучного інтелекту, що покращує рішення для захисту та сприяє співпраці. Автоматизація усунення вразливостей за допомогою штучного інтелекту скорочує час і зусилля, ефективно захищаючи цифрове середовище.
Від інженера з контролю якості до експерта з аналітики даних, який самоучка, мандрує розмитими межами ролей даних у світі технологій, що швидко розвивається. Вивчення реальних відмінностей між ролями даних на прикладі вигаданого стартапу швидкої комерції Quikee та його потреб у даних.
Генеративний ШІ трансформує галузі, але занепокоєння щодо відповідального використання зростає. Для зменшення ризиків і забезпечення безпечної розробки ШІ вкрай важливим є об'єднання зусиль для створення червоних команд.