Нова нейронна мережа від Бостонського університету – Neural Phase Retrieval використовує методи глибокого навчання для поліпшення реконструкції зображень з високою роздільною здатністю з даних з низькою роздільною здатністю. Результати NeuPh вже успішно перевершили традиційні методи.
Проводячи експерименти та покращуючи їх аналіз, MAIA може інтерпретувати нейронні мережі, що підвищує розуміння роботи ШІ моделей. Цей агент може визначати активність нейронів, видаляти нерелевантні функції та виявляти упередження, роблячи системи ШІ безпечнішими та більш прозорими.
Перегони дронів стали використовувати для тестування нейронних мереж для майбутніх космічних місій. Цей проєкт спрямований на автономне керування складними маневрами космічного корабля, оптимізацію бортових операцій і підвищення ефективності та надійності місії.
ШІ навчився розшифровувати собачий гавкіт, відрізняючи грайливий гавкіт від агресивного, а також визначати вік, стать і породу собаки. Спочатку навчені на людській мові, моделі ШІ досягли вражаючої точності і обіцяють значні покращення в комунікації та догляді за тваринами.
Подібно до приближення сильного холодного фронту, у спільноті синоптиків відбуваються серйозні зміни. Очікуваний результат? Абсолютно новий спосіб прогнозування погоди на основі ШІ, який працює на персональному комп’ютері.
Остання розробка від компанії Meta AI – Llama 3 може похвалитися неперевершеною обробкою мовлення, що підвищує її здатність виконувати складні задачі. Завдяки збільшеному словниковому запасу та розширеним функціям безпеки підвищено продуктивність і універсальність моделі.
Останнє творіння від OpenAI – Sora – створює захоплюючі відео, демонструючи неперевершену реалістичність візуальних композицій. Завдяки поєднанню обробки мови та генерації відео, модель може інтерпретувати текстові підказки, пристосовуватися до різних способів введення даних та імітувати динамічний рух камери.
Amazon представив модель TTS з інноваційною архітектурою, яка встановлює новий стандарт для синтезу мовлення. BASE TTS не тільки забезпечує неперевершену природність мовлення, але й демонструє надзвичайну адаптивність у обробці різноманітних мовних нюансів.
MPT-7B пропонує оптимізацію архітектури та покращення продуктивності, включаючи сумісність з екосистемою HuggingFace. Навчена на 1 трильйоні токенів тексту та коду, модель встановлює новий стандарт LLM для комерційного використання.
Глибоке активне навчання поєднує традиційне навчання нейронної мережі зі стратегічним відбором зразків даних. Такий інноваційний підхід дозволяє підвищити продуктивність, ефективність і точність моделі в широкому спектрі застосувань.
ALERTA-Net — нова глибока нейронна мережа, що поєднує соціальні мережі, макроекономічні показники та інформацію пошукових систем. Унікальна модель передбачає рух цін на акції та волатильність фондового ринку, виходячи за межі традиційних методів аналізу.
У 1950 році британський вчений Алан Тюрінг запропонував тест, який визначає, чи здатні машини мислити. На сьогоднішній день, ще жодному штучному інтелекту не вдалося успішно його пройти. Чи буде ChatGPT першим?
OpenAI провела вражаючий DevDay та презентувала новий функціонал. Поринь у світ інновацій та розшир свої горизонти у роботі зі штучним інтелектом. Дізнайся про гарячі новинки у нашій статті!
У продовження досліджень про деревоподібні архітектури вивчається питання про необхідність глибокого навчання для ШІ та пропонуються альтернативні методи машинного навчання, які можуть бути більш ефективними для складних завдань класифікації.
Науковці з Інституту гарантованої автономії досліджують нові методи забезпечення безпеки у світі безпілотних авіаційних систем, де зростає кількість БПЛА, застосовуючи сучасні методи штучного інтелекту та симуляційних середовищ.
Новий метод оцінки руху дозволяє отримувати довгострокові траєкторії руху для кожного пікселя в кадрі, навіть у разі швидких рухів та складних сцен. Дізнайтеся більше про захоплюючу технологію та майбутній аналіз руху в статті про OmniMotion.
Натхнені здібностями мурах, дослідники з Единбурзького та Шеффілдського університетів розробляють штучну нейронну мережу, щоб допомогти роботам розпізнавати та запам’ятовувати маршрути в складних природних умовах.
TalkToModel – інноваційна система для забезпечення відкритих діалогів із моделями МН. Ця платформа дозволяє користувачам не тільки розуміти, але й спілкуватися з моделями МН природною мовою, а також отримувати пояснення процесів їх роботи.
Останні дослідження у сфері ШІ, які засновано на деревоподібній архітектурі, відкривають нові перспективи для навчання штучних нейронних мереж.
Останні дослідження демонструють, що, незважаючи на широке використання CAPTCHA як захисту від автоматизації, сучасні боти краще і швидше вирішують завдання CAPTCHA ніж люди.
SeamlessM4T руйнує мовні бар'єри завдяки своїм комплексним можливостям перекладу та транскрипції. Ця модель ШІ може легко перетворити мову або текст, забезпечуючи переклад у режимі реального часу та сприяючи міжкультурному взаєморозумінню.
Нове дослідження по вдосконаленню технологій комп’ютерного зору поєднує науки про великі дані та фізику. Таке гібридне комп’ютерне бачення дозволяє ШІ усвідомленно сприймати, взаємодіяти та реагувати на зовнішнє середовище в реальному часі.
Європейське космічне агентство використовує нейронні мережі при розробці системи збору та доставки зразків з Марса. Складна місія повернення зразків, зібраних марсоходом Perseverance, має критичне значення для розкриття таємниць червоної планети.
Нова архітектура має на меті подолати існуючі обмеження нейронних мереж та символічного ШІ. Запропонована модель вже демонструє високу ефективність у вирішенні логічних завдань, відкриваючи перспективу для інтеграції різних парадигм ШІ.
Меміндуктор, як і відкриті раніше мемрісторі та мемконденсатор, є одним із елементів електронної схеми, які можуть зберігати та відновлювати попередні значення струму або напруги.
Сонячні батареї на основі гібридних органо-неорганічних перовскітів є наразі напрямом альтернативної енергетики, який найактивніше розвивається. Ці молекули започаткували розвиток нового класу фотовольтаїчних пристроїв – перовскітних сонячних елементів.
Дослідники використали набір простих програм для генерації зображень, щоб створити набір даних та навчити модель комп'ютерного зору. Такий підхід сприяє покращенню продуктивності моделей класифікації зображень, навчених на синтетичних даних.
Вчені розробили новий підхід до моделювання руху, використовуючи відносну зміну положення. Вони оцінили здатність архітектур глибинних нейронних мереж моделювати рух за допомогою задач розпізнавання та прогнозування руху.
Дослідники розробили новий алгоритм ШІ, спрямований на візуалізацію кластерів даних та інших макроскопічних ознак так, щоб вони були максимально чіткими, легкими для спостереження та зрозумілими людині.
Вчені розробили модель DetectGPT, яка у 95% випадків може відрізнити текст, написаний людиною, від тексту, згенерованого за допомогою популярних мовних моделей з відкритим вихідним кодом.
Дослідники створили нову нейроморфну обчислювальну систему, що підтримує генеративний та графічний клас моделей глибинного навчання та можливість роботи з нейронними моделями глибинного навчання.
Група вчених розробила новий спосіб прогнозування викидів амінів на заводах з уловлювання вуглецю, використовуючи машинне навчання та експериментальні дані стрес-тесту, проведеного на заводі в Німеччині.
Вчені розробили перший штучний біореалістичний нейрон, який може ефективно взаємодіяти зі справжніми біологічними нейронами.
Вчені розробили біонічний палець, який може створювати 3D-карти внутрішньої структури матеріалів, торкаючись їх зовнішньої поверхні.
Бездротова м'яка електронна шкіра може як виявляти, так і передавати відчуття дотику, а також формувати сенсорну мережу, що відкриває великі можливості для покращення інтерактивного сенсорного спілкування.
Meta AI запустила LLaMA, серію базових мовних моделей, які можуть конкурувати або навіть перевершити найкращі моделі з існуючих, такі як GPT-3, Chinchilla та PaLM.
MusicLM – це штучний інтелект нового покоління, який створює високоякісну музику на основі текстових описів подібно до того, як DALL-E створює зображення з текстів.
Вчені з Мічиганського університету дослідили стратегії поведінки роботів для відновлення довіри між ботом і людиною. Чи зможуть такі стратегії повністю відновити довіру і наскільки вони ефективні після повторних помилок ботів?
Група дослідників створила Байєсівську машину з використанням мемристорів. Вона є більш енергоефективною, ніж існуючі апаратні рішення, і може використовуватися для критичних з точки зору безпеки додатків.
Завдяки досягненням у сфері штучного інтелекту інженери з Колорадського Університету в Боулдері працюють над новим типом тростини для сліпих або людей із вадами зору.
Дослідники Тель-Авівського університету досягли технологічного прориву: новий біологічний датчик фіксує наявність запаху та надсилає інформацію про нього роботу для інтерпретації результатів
Моделі синтезу мови зазвичай потребують тривалих зразків аудіофайлів для опрацювання, тоді як VALL-E імітує голос усього за декілька секунд звукозапису.
Дослідники зі Стенфордського університету розробили новий тип еластичного біосумісного матеріалу, який розпилюється на зовнішню сторону рук та може розпізнавати їх рухи.
Point E – це нова система текстового синтезу 3D-зображень, яка спочатку формує штучне уявлення про об'єкт, а потім на його основі створює кольорові хмари точок.
Безпілотні автомобілі вже давно вважаються видом транспорту нового покоління. Для забезпечення автономної навігації таких транспортних засобів необхідно впровадити багато різноманітних технологій.
Нове дослідження Тихоокеанської північно-західної національної лабораторії передбачає використання машинного навчання, аналізу даних та штучного інтелекту для виявлення потенційних ядерних загроз.
Дослідники запропонували нові способи використання ШІ разом із відеоспостереженням для роздрібної торгівлі, щоб краще розуміти поведінку споживачів та адаптувати планування магазинів для збільшення продажів.
Декодування мовлення на основі активності головного мозку було давньою метою неврологів і клініцистів. Наразі, компанія Meta представили результати дослідження моделі ШІ, яка може декодувати мову, використовуючи неінвазивні методи дослідження.
Додаток Look to Speak від Google здатний допомогти людям з порушеннями моторики та проблемами мовлення легше спілкуватися. Використовуючи лише очі, програма дозволяє вибирати заздалегідь підготовлені фрази і озвучувати їх.
Дослідники з Массачусетського технологічного інституту розробили техніку машинного навчання, яка точно фіксує та моделює основну акустику місцевості лише з невеликої кількості звукових записів.
До 2050 року людству доведеться майже вдвічі збільшити світові запаси продовольства, щоб забезпечити кожного жителя планети достатньою кількістю їжі. Оскільки зміна клімату відбувається дедалі швидше, водні ресурси скорочуються, а орні землі руйнуються, гарантувати сталий розвиток стане серйозним викликом.
За останнє десятиліття різке зростання вартості виробництва відеоігор класу ААА стало однією з найбільш серйозних проблем в ігровій індустрії. Студії завжди шукають технології, які б могли допомогти знизити вартість розробки ігор. Останні досягнення в нейронних моделях генерації зображень вселяють надію, що реалізація цієї мрії може бути не такою вже далекою.
Чи можуть комп’ютери мислити? Чи можуть моделі штучного інтелекту (ШІ) бути свідомими? Ці та подібні запитання часто виникають під час обговорення нещодавнього прогресу ШІ, досягнутого за допомогою моделей природної мови GPT-3, LAMDA та інших перетворювачів. Тим не менш, вони все ще суперечливі і знаходяться на межі парадоксу, тому що зазвичай існує безліч прихованих припущень і помилкових уявлень про те, як працює мозок і що означає мислення. Немає іншого шляху, окрім як точно обґрунтувати ці припущення, а потім дослідити, як саме обробка інформації людиною може бути відтворена машинами.
Зараз вже нікого не здивувати фільтрами, які покращують якість фотографій. Але реставрація старих портретів поки що залишає бажати кращого. Старі фотографії бувають надто розмитими, тому звичайні методи підвищення чіткості зображень на них не працюють.
Компанія Facebook виклала у відкритий доступ проєкт NLLB (No Language Left Behind). Головною особливістю цієї розробки є охоплення понад двохсот мов, у тому числі рідкісних мов африканських та австралійських народів. Крім того, Facebook застосував новий підхід до моделі машинного навчання, де переклад здійснюється безпосередньо з однієї мови на іншу, без перехідного перекладу англійською мовою.
Анімовані аватари вже давно стали частиною нашого життя. А ось реалістичне моделювання анімації одягу досі залишалося невирішеним завданням.
З одного боку, сучасні методи фізичного моделювання можуть генерувати реалістичну геометрію одягу з інтерактивною швидкістю. З іншого, моделювання фотореалістичного зовнішнього вигляду зазвичай потребує фізичного рендерингу, який занадто дорогий для інтерактивних програм.
Група вчених, що використовують машинне навчання, «заново відкрила» закон Всесвітнього тяжіння.
Для цього вони навчили «графічну нейронну мережу» моделювати динаміку Сонця, планет і великих планет Сонячної системи з 30 років спостережень. Потім вони використали символічну регресію, щоб виявити аналітичне вираження закону сили, неявно вивченого нейронною мережею.