ИИ-агенты - это динамические сущности, которые в 2024 году произведут революцию в развертывании, настройке и мониторинге сетей. Они адаптируются, рассуждают и действуют автономно, повышая эффективность принятия решений и оперативность реагирования в реальном времени.
Chronos-Bolt в AutoGluon-TimeSeries обеспечивает более быстрое прогнозирование с нуля по сравнению с традиционными моделями, превосходя статистические и базовые модели глубокого обучения. Основанная на архитектуре T5, она в 250 раз быстрее и в 20 раз экономичнее по объему памяти, чем оригинальные модели Chronos, обеспечивая точность прогнозов.
Узнайте, как с помощью сетевых наук и Python составить карту связей между персонажами в популярном сериале Arcane из вселенной League of Legends на Netflix. Собрав данные о персонажах и визуализировав сеть, вы сможете применить эти навыки к любой сложной системе, не ограничиваясь сериалом Arcane.
Amazon SageMaker Fast Model Loader сокращает время развертывания LLM в 15 раз за счет потоковой передачи весов моделей из Amazon S3. Эта инновация преобразует развертывание LLM, обеспечивая более быстрое время загрузки для более эффективных приложений ИИ.
Генерируйте синтетические данные для регрессии машинного обучения с помощью нейронной сети с заданными параметрами. Упростите генерацию сложных данных с помощью настраиваемой функции на C#.
Доцент Массачусетского технологического института Кэтрин Д'Игнацио применяет данные для решения социальных проблем, расширяя возможности граждан с помощью аргументов, основанных на данных. Ее работа над проблемой феминицида привела к созданию инновационных инструментов искусственного интеллекта и книги «Подсчет феминицида», которая привлекла внимание общественности во всем мире.
ChatGPT превзошел ученых, вызвав опасения по поводу будущего ИИ. Дрю Брейниг делит ИИ на богов, стажеров и шестеренки, выделяя потенциальные угрозы существования.
Разработчики на re:Invent 2024 сталкиваются с уникальными задачами физических гонок AWS DeepRacer. Переход от виртуальных к физическим гонкам представляет собой серьезную проблему из-за различий в условиях и возможностях автомобилей.
Возрастает озабоченность по поводу воздействия больших языковых моделей (LLM) на окружающую среду. Пример: Llama 3.1 405B от Meta требует огромных ресурсов, выбрасывает тонны CO2. OpenAI сталкивается с финансовыми трудностями, поскольку затраты на вычисления почти сравнялись с общим доходом.
В своей новой книге Мариетье Шааке рассказывает о беспрецедентной силе больших технологий. Она подчеркивает, что в отличие от прежних монополий влияние технологических компаний распространяется на различные отрасли.
Компания Cohere выпустила Rerank 3.5 через Rerank API на Amazon Bedrock, расширив возможности поиска релевантности и ранжирования контента для клиентов AWS. Технология Reranking улучшает результаты поиска, анализируя семантическое значение, намерения пользователей и бизнес-правила, что приносит пользу платформам электронной коммерции и глобальным организациям в различных отраслях.
Проверяйте модели машинного обучения с помощью 12 методов. Выберите подходящий, чтобы обеспечить точность прогнозов на основе имеющихся данных.
DER SPIEGEL улучшает рекомендации новостей, используя большие языковые модели (LLM) для точного прогнозирования. Результаты показывают, что LLM достигают 56 % точности@5, превосходя случайные рекомендации.
Начните с проблемы, а не с ее решения. Не навязывайте чатботам решения проблем, сосредоточьтесь сначала на бизнес-процессах.
Хранение древовидных структур данных в виде списков упрощает размещение узлов. Преобразование полных списков в деревья с уплотненными индексами требует явных дочерних индексов.