Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Революція в профілактиці серцевої недостатності завдяки глибокому навчанню

Дослідники з Массачусетського технологічного інституту та Гарвардської медичної школи розробили неінвазивний підхід глибокого навчання для точного прогнозування ризику серцевої недостатності. Модель показала багатообіцяючі результати в клінічних випробуваннях, що дає надію на раннє втручання для запобігання госпіталізації.

Опановуємо моделі дифузії: 6 стратегій управління

Дифузійні моделі, такі як Stable Diffusion і DALL-E, продемонстрували вражаючу якість генерації зображень. Такі технології, як Dreambooth і Lora, дозволяють налаштовувати моделі з мінімальними зусиллями, що дає змогу моделям швидко засвоювати нові концепції.

Штучний інтелект у залі суду: Виклики та межі

Зростання ролі штучного інтелекту в юридичній сфері викликає занепокоєння, оскільки суди побоюються його використання при написанні юридичних документів і цитуванні судових справ. Використання адвокатом ChatGPT для написання резюме справи призвело до неіснуючих посилань, що підкреслює потенційні ризики використання ШІ в юридичній роботі.

Вплив технічної неграмотності: Розмова з Джеєм Бернардом

Джей Бернард, поет, лауреат багатьох нагород, використовує штучний інтелект у проекті The Last X Years, щоб виявити маніпуляції з якісними даними в розмовах про Brexit, роблячи невидимі процеси видимими. Використовуючи TensorFlow від Google, проект пов'язує заголовки новин та інтерв'ю, проливаючи світло на маніпуляції з демократією в цифрову епоху.

Чи може ChatGPT написати мій роман? Шотландський поворот Гарет Рубін

Штучний інтелект загрожує творчості в письменницькій індустрії, Гільдія авторів планує створити знак довіри до книг, написаних людиною. Автор тестує ШІ на ефективність написання роману в сиквелі трилера «Задзеркалля».

Регулювання штучного інтелекту: йти в ногу з інноваціями

Нещодавній відкритий лист піднімає моральні питання щодо свідомості ШІ. Важко визначити, чи є ШІ справді свідомим, чи лише імітує його. Дискусія вимагає обережного, агностичного підходу.

Революція в будівельній аналітиці за допомогою штучного інтелекту CONXAI на Amazon EKS

CONXAI Technology GmbH є піонером у створенні платформи штучного інтелекту для індустрії AEC, пропонуючи розширені можливості анонімізації та розпізнавання об'єктів. Розміщене на AWS, рішення ШІ пропонує варіанти MaaS та SaaS для безперешкодної інтеграції та дотримання вимог GDPR на будівельних майданчиках.

Будуємо мости: Створення спільної мови

Каймінг Хе з Массачусетського технологічного інституту бачить, як ШІ руйнує стіни між науковими дисциплінами, створюючи спільну мову для прогресу та співпраці. Від AlphaFold до ChatGPT, інструменти ШІ сприяють прогресу в різних галузях, таких як прогнозування структури білків та обробка природної мови.

Опановуємо LLM Temperature: Ваш остаточний посібник

LLM-додатки вимагають навмисного налаштування температури для контролю випадковості. Значення температури впливають на результати моделі, роблячи їх більш випадковими або цілеспрямованими. Функція Softmax перетворює необроблені результати в чистий розподіл ймовірностей для точних прогнозів.

Забезпечення та масштабування MLOps для врядування

Команди, що займаються наукою про дані, стикаються з проблемами при переході від моделей до виробництва, але багатоакаунтна платформа ML вирішує ці проблеми. Такі ролі, як провідний аналітик даних, аналітики даних, інженери ML та керівники, працюють разом, щоб оптимізувати життєвий цикл ML, забезпечуючи безпеку та ефективність.

Обман в квест-кімнаті: Мій невдалий тестовий експеримент на ступінь магістра права

Модель R1 від DeepSeek отримала високу оцінку за продуктивність і вартість, спричинивши потенційні зміни в ландшафті LLM. Розуміння еталонних показників LLM є ключем до подолання хайпу та створення конкретних еталонних показників для конкретних сценаріїв використання.

Моделі гауссових сумішей: Розкриття методу моментів

Обробка звуку спирається на статистичні моделі, такі як модель гауссової суміші (GMM), для класифікації та імітації фонового шуму в різних середовищах, що допомагає в розробці DSP-рішень для придушення перешкод і покращення якості звуку. Розподіли GMM з різною ймовірністю точно представляють різні джерела шуму, що має вирішальне значення для практичних аудіосистем.

Підвищення точності прогнозів за допомогою методу валідації

Дослідники з Массачусетського технологічного інституту виявили недоліки в традиційних методах перевірки просторових прогнозів, що призводять до неточних прогнозів. Вони розробили нову методику, яка перевершила загальноприйняті методи прогнозування погоди та якості повітря, пропонуючи більш надійні оцінки для різних застосувань.

Стартові набори Amazon Q: Швидкий шлях до успіху для малого та середнього бізнесу

AWS пропонує стартові набори, розгорнуті рішення, які вирішують поширені бізнес-проблеми, оптимізуючи витрати та заощаджуючи час. Amazon Q Business - це асистент на основі штучного інтелекту, який дає змогу працівникам бути більш креативними, ефективними та продуктивними.

Штучний інтелект проти отрути: Створення білків для боротьби зі смертоносними зміями

Білки, створені за допомогою штучного інтелекту, нейтралізують смертельну зміїну отруту швидше, дешевше та ефективніше, ніж традиційні протиотрути. Цей прорив дає надію на доступне лікування, яке врятує мільйони життів і засобів до існування в сільських громадах по всьому світу.