A/B-тести порівнюють лікування А і лікування Б для кампаній, щоб визначити, яке з них приносить більший дохід на покупця. Маркетологи аналізують частоту покупок і середню суму замовлення, щоб ефективно оптимізувати кампанії.
Модель R1 від DeepSeek отримала високу оцінку за продуктивність і вартість, спричинивши потенційні зміни в ландшафті LLM. Розуміння еталонних показників LLM є ключем до подолання хайпу та створення конкретних еталонних показників для конкретних сценаріїв використання.
LLM-додатки вимагають навмисного налаштування температури для контролю випадковості. Значення температури впливають на результати моделі, роблячи їх більш випадковими або цілеспрямованими. Функція Softmax перетворює необроблені результати в чистий розподіл ймовірностей для точних прогнозів.
StabilityAI представляє революційну модель Stable Diffusion XL, що розвиває технологію штучного інтелекту «текст-зображення». Дізнайтеся, як ефективно налаштувати та розмістити модель на AWS Inf2 для досягнення чудової продуктивності.
Новий адміністратор EPA Лі Зельдін визначив пріоритетом підтримку автомобільної промисловості, оминувши кліматичну кризу. Незвичний фокус на ШІ як ключовому пріоритеті агентства викликає подив.
Неефективне обчислення метрик може збільшити витрати на навчання. TorchMetrics оптимізує збір метрик у PyTorch.
Aetion перетворює реальні дані на докази для осіб, які приймають рішення в галузі охорони здоров'я, використовуючи запити на природній мові та технологію Amazon Bedrock. Доказова платформа Aetion дозволяє користувачам створювати когорти та аналізувати результати, оптимізуючи клінічні випробування та дослідження безпеки ліків і методів лікування.
Новий канал новин Channel 1 показує сюжети зі сценарієм, написаним штучним інтелектом, 30-ма мовами, що становить загрозу для мейнстримних ЗМІ. The Guardian досліджує питання довіри та привабливості для аудиторії під час візиту до Лос-Анджелеса.
Дослідники з Лос-Аламоса перепрофілювали ШІ-модель Wav2Vec-2.0 від Meta для аналізу сейсмічних сигналів від гавайського вулкану Кілауеа. ШІ може відстежувати рух розломів у реальному часі, що є важливим кроком до розуміння поведінки землетрусів.
Технологічні компанії повинні звітувати про використання енергії та води, щоб запобігти шкоді навколишньому середовищу від розвитку штучного інтелекту, вважають експерти. NEPC закликає до обов'язкової звітності та вимог сталого розвитку для центрів обробки даних.
Сара Бірі застосовує комп'ютерний зір і машинне навчання для моніторингу міграції лосося, критично важливої для здоров'я екосистеми і культурного значення на північному заході Тихого океану. Точний підрахунок лосося необхідний для управління рибальством на тлі загроз, пов'язаних з діяльністю людини, втратою середовища існування та зміною клімату.
Стаття висвітлює регресію випадкових сусідів, ансамблевий підхід, що використовує декілька систем k-найближчих сусідів з різними підмножинами та значеннями k для прогнозування цільових значень. Демонстрація методу демонструє навчання моделі та точність прогнозування, підкреслюючи універсальність та потенціал методу в машинному навчанні.
Пояснення дифузійних моделей з ілюстраціями, з акцентом на те, як вони навчаються і генерують дані. Приклад використання glyffuser для генерації китайських гліфів з англійських визначень.
Google виправив неправдиву статистику про сир гауда в рекламі Gemini AI після критики блогера перед Суперкубком. Реклама демонструє, як АІ допомагає продавцю сиру у Вісконсині, підкреслюючи помилковість твердження про глобальне споживання сиру.
Економічна ефективність ШІ від Deepseek привертає увагу. Дізнайтеся про навчання з підкріпленням у великих мовних моделях, зосередившись на TRPO, PPO та GRPO. Вивчіть основи RL, використовуючи аналогію з лабіринтом, і як це застосовується в LLM для вдосконалення відповідей на основі людського зворотного зв'язку.