Стаття: «Нейромережева квантильна регресія з використанням C#». Унікальним підходом до регресії машинного навчання є квантильна регресія, особливо корисна для сценаріїв зі значними наслідками недопрогнозування. Використовуючи спеціальну функцію втрат, нейромережева квантильна регресія має на меті передбачити значення до заданого квантиля, пропонуючи перспективний метод точного прогнозування.
Генеративний ШІ на чолі з моделлю SD3.5 Large від Stability AI трансформує створення ігрового середовища завдяки високоякісній генерації різноманітних зображень. Ця інновація прискорює цикли проектування і дає користувачам можливість створювати захоплюючі віртуальні світи, обіцяючи нову еру ігрової творчості за допомогою ШІ.
ML Uncertainty: пакет Python для вирішення проблеми відсутності кількісної оцінки невизначеності в популярному програмному забезпеченні ML. Призначений для оцінки невизначеностей у прогнозах за допомогою лише кількох рядків коду, що робить його недорогим в обчислювальному плані і застосовним до реальних сценаріїв з обмеженими даними.
Морський консорціум MIT має на меті скоротити викиди парникових газів у морському судноплавстві за допомогою інноваційних технологій та міждисциплінарних досліджень. Очолюваний професорами Массачусетського технологічного інституту Сапсісом і Крістією, консорціум включає ключових гравців галузі та зосереджується на таких сферах, як ядерні технології, автономна робота, кібербезпека та 3D-друк дл...
Data Scientist досліджує LangChain та LangGraph для створення агентів штучного інтелекту. Використання n8n для легкого розгортання диспетчерської вежі на базі штучного інтелекту в аналітиці ланцюгів поставок.
Amazon SageMaker JumpStart пропонує заздалегідь підготовлені моделі та нові можливості для безпечного створення, управління та налаштування моделей ML. Покращені функції приватного хабу дозволяють підприємствам балансувати між стандартизацією та кастомізацією для успішного впровадження ШІ.
У потужному романі-антиутопії, номінованому на Жіночу премію, Сара Хуссейн потрапляє до в'язниці за те, що може вчиняти злочини за допомогою системи безпеки зі штучним інтелектом. Попри те, що Сара - звичайна музейна архівістка, її «оцінка ризику» призводить до того, що вона потрапляє до жіночої в'язниці, де її доля перебуває в руках охоронців.
Комітет державних рахунків попереджає про ризики для ефективності уряду через застарілі технології та дефіцит цифрових навичок. Понад 20 застарілим ІТ-системам досі не вистачає фінансування для вдосконалення, що перешкоджає інтеграції ШІ.
Метод найменших квадратів має важливе значення в машинному навчанні для мінімізації середньоквадратичної помилки. Норма L2 забезпечує плавність і зручність обчислень при оптимізації лінійної регресії.
Перехід до стандартизованого підходу до виклику інструментів ШІ, подібного до REST API, має вирішальне значення для впорядкування галузі. Протокол Model Context Protocol (MCP) має на меті забезпечити контекст для моделей ШІ у стандартний спосіб, демократизуючи виклик інструментів і підвищуючи безпеку системи.
Річард Осман застерігає Meta після використання піратської бази даних книг для навчання ШІ, наголошуючи на важливості дотримання авторських прав. Осман оскаржує дії компанії, стверджуючи, що автори повинні питати дозволу на використання їхніх творів.
Згідно з дослідженнями OpenAI та Массачусетського технологічного інституту, емоційна взаємодія з ChatGPT призводить до інтенсивнішого використання та меншої кількості стосунків поза мережею. Активні користувачі ChatGPT, як правило, більш самотні та емоційно залежні від інструменту штучного інтелекту.
Фінтех-компанія Block, що управляє CashApp, Square і Tidal, закриває майже 800 відкритих робочих місць у рамках другого за рік скорочення, яке торкнеться понад 930 співробітників. Джек Дорсі, співзасновник Twitter, інформує співробітників про майбутні скорочення в електронній пошті під назвою «менший блок».
Генеративний ШІ вдосконалює ПК за допомогою мікросервісів NVIDIA NIM, AI Blueprints і Project G-Assist для підвищення доступності та продуктивності. NVIDIA NIM пропонує готові моделі ШІ, оптимізовані для RTX, спрощуючи розробку ШІ та розширюючи інструментарій для ПК на основі ШІ.
Інженер з машинного навчання пояснює свою роль: навчання, розгортання моделей та необхідні навички. Робочий процес включає ідеї, дані, дослідження та аналіз для вдосконалення моделей і створення цінності.