Нещодавній відкритий лист піднімає моральні питання щодо свідомості ШІ. Важко визначити, чи є ШІ справді свідомим, чи лише імітує його. Дискусія вимагає обережного, агностичного підходу.
LLM-додатки вимагають навмисного налаштування температури для контролю випадковості. Значення температури впливають на результати моделі, роблячи їх більш випадковими або цілеспрямованими. Функція Softmax перетворює необроблені результати в чистий розподіл ймовірностей для точних прогнозів.
Обробка звуку спирається на статистичні моделі, такі як модель гауссової суміші (GMM), для класифікації та імітації фонового шуму в різних середовищах, що допомагає в розробці DSP-рішень для придушення перешкод і покращення якості звуку. Розподіли GMM з різною ймовірністю точно представляють різні джерела шуму, що має вирішальне значення для практичних аудіосистем.
Технологічні компанії повинні звітувати про використання енергії та води, щоб запобігти шкоді навколишньому середовищу від розвитку штучного інтелекту, вважають експерти. NEPC закликає до обов'язкової звітності та вимог сталого розвитку для центрів обробки даних.
Неефективне обчислення метрик може збільшити витрати на навчання. TorchMetrics оптимізує збір метрик у PyTorch.
Google виправив неправдиву статистику про сир гауда в рекламі Gemini AI після критики блогера перед Суперкубком. Реклама демонструє, як АІ допомагає продавцю сиру у Вісконсині, підкреслюючи помилковість твердження про глобальне споживання сиру.
Новий канал новин Channel 1 показує сюжети зі сценарієм, написаним штучним інтелектом, 30-ма мовами, що становить загрозу для мейнстримних ЗМІ. The Guardian досліджує питання довіри та привабливості для аудиторії під час візиту до Лос-Анджелеса.
Новий адміністратор EPA Лі Зельдін визначив пріоритетом підтримку автомобільної промисловості, оминувши кліматичну кризу. Незвичний фокус на ШІ як ключовому пріоритеті агентства викликає подив.
StabilityAI представляє революційну модель Stable Diffusion XL, що розвиває технологію штучного інтелекту «текст-зображення». Дізнайтеся, як ефективно налаштувати та розмістити модель на AWS Inf2 для досягнення чудової продуктивності.
Сара Бірі застосовує комп'ютерний зір і машинне навчання для моніторингу міграції лосося, критично важливої для здоров'я екосистеми і культурного значення на північному заході Тихого океану. Точний підрахунок лосося необхідний для управління рибальством на тлі загроз, пов'язаних з діяльністю людини, втратою середовища існування та зміною клімату.
Aetion перетворює реальні дані на докази для осіб, які приймають рішення в галузі охорони здоров'я, використовуючи запити на природній мові та технологію Amazon Bedrock. Доказова платформа Aetion дозволяє користувачам створювати когорти та аналізувати результати, оптимізуючи клінічні випробування та дослідження безпеки ліків і методів лікування.
Стаття висвітлює регресію випадкових сусідів, ансамблевий підхід, що використовує декілька систем k-найближчих сусідів з різними підмножинами та значеннями k для прогнозування цільових значень. Демонстрація методу демонструє навчання моделі та точність прогнозування, підкреслюючи універсальність та потенціал методу в машинному навчанні.
Дослідники з Лос-Аламоса перепрофілювали ШІ-модель Wav2Vec-2.0 від Meta для аналізу сейсмічних сигналів від гавайського вулкану Кілауеа. ШІ може відстежувати рух розломів у реальному часі, що є важливим кроком до розуміння поведінки землетрусів.
Пояснення дифузійних моделей з ілюстраціями, з акцентом на те, як вони навчаються і генерують дані. Приклад використання glyffuser для генерації китайських гліфів з англійських визначень.
Графічні процесори NVIDIA GeForce RTX 5090 і 5080 на базі архітектури Blackwell забезпечують у 8 разів вищу частоту кадрів завдяки технології DLSS 4. Мікросервіси NVIDIA NIM і AI Blueprints для RTX забезпечують легкий доступ до генеративних моделей ШІ на ПК, прискорюючи розробку ШІ на різних платформах.