Інструменти штучного інтелекту Apple можуть переписувати тексти та електронні листи, але лінгвісти попереджають про втрату нюансів і характеру. Технологія спрямована на те, щоб користувачі звучали більш дружелюбно або професійно.
Data scientists, які переходять на керівні посади, потребують бізнес-навичок, таких як вільне володіння фінансами, щоб керувати ефективними ініціативами в галузі даних. Розуміння фінансових умов може допомогти адаптувати інсайти, підвищити успіх компанії і навіть домовитися про кращу оплату праці. Знання цифр відкриває двері до таких можливостей, як податкові знижки на інвестиції в R&D.
Співробітники британського Інституту Алана Тьюринга попереджають про ризики для довіри через звільнення керівництва та скорочення витрат. 90 співробітників висловлюють занепокоєння опікунам щодо керівництва організації.
DDPG покращує медичну робототехніку, керовану штучним інтелектом, вирішуючи проблему безперервного управління діями. Фреймворк Actor-Critic в DDPG поєднує в собі DPG і DQN для підвищення стабільності та продуктивності в середовищах з безперервними діями.
EBSCOlearning співпрацює з AWS GenAIIC, щоб трансформувати процес оцінювання навчання за допомогою технології генеративного ШІ. Проблеми генерації контролю якості вирішуються за допомогою рішення на основі штучного інтелекту для масштабованого високоякісного оцінювання.
Графічні процесори NVIDIA RTX забезпечують 1300 найкращих результатів у іграх і творчості на основі ШІ. Приєднуйтесь до #WinterArtChallenge, щоб продемонструвати своє мистецтво та виграти можливість з'явитися в соціальних мережах NVIDIA Studio.
Використання GPT-3.5 та Unstructured API для ефективного перекладу мемуарів Кармен Рози з іспанської на англійську зі збереженням суті оповіді. Технічна реалізація включає імпорт книги, переклад за допомогою GPT-3.5 та експорт у формат Docx з використанням API Unstructured.
Берлінська компанія Vay пропонує унікальний сервіс телеводіння з використанням технології NVIDIA для безпечного дистанційного керування автомобілем у реальному часі. Vay змінює мобільність завдяки автономному водінню, керованому людиною та визначеному штучним інтелектом, встановлюючи новий стандарт у міському транспорті.
Короткий зміст: Дізнайтеся про три безкоштовні рішення для ефективного покращення якості даних. Використовуйте олдскульні трюки роботи з базами даних, створюйте кастомні дашборди та генеруйте лінійки даних за допомогою Python. Спростіть процеси та зменшіть складність для покращення якості даних.
Pixtral 12B, найсучасніша модель мови технічного зору Mistral AI, чудово справляється з текстовими та мультимодальними завданнями, перевершуючи інші моделі. Вона має нову архітектуру з 400-мільйонним візуальним кодером і 12-мільярдним трансформаторним декодером, що забезпечує високу продуктивність і швидкість для розуміння зображень і документів.
Дослідники з Массачусетського технологічного інституту розробили систему, що використовує великі мовні моделі для перетворення складних пояснень ШІ на просту мову, покращуючи розуміння користувача. Система оцінює якість розповіді, що дозволяє користувачам довіряти прогнозам машинного навчання і налаштовувати пояснення відповідно до конкретних потреб.
Новий інструмент OpenAI, Sora, створює реалістичні відеокліпи з підказок, що викликає занепокоєння щодо розмивання межі між реальністю та контентом, створеним штучним інтелектом. Незважаючи на вражаючі візуальні ефекти, журналіст відчував себе радше засмученим, ніж враженим, коли побачив цей дивовижний реалізм.
Два підходи до аналізу мультимодальних даних: спочатку вбудовуємо, потім робимо висновки за допомогою Amazon Titan Multimodal Embeddings та спочатку робимо висновки, потім вбудовуємо за допомогою Anthropic's Claude 3 Sonnet. Оцінювання за допомогою набору даних SlideVQA, що надає стислі відповіді на запитання користувачів.
Дослідники MIT CSAIL розробили ContextCite - інструмент для підвищення довіри до контенту, створеного штучним інтелектом, шляхом визначення зовнішніх джерел контексту. Цей інструмент допомагає користувачам перевіряти твердження, відстежувати помилки до джерел і виявляти галюцинації.
Китай розслідує антимонопольні порушення компанії Nvidia на тлі обмежень у секторі виробництва мікросхем у США, які впливають на ШІ та ігрові чіпи. Державна адміністрація з регулювання ринку (SAMR) проводить розслідування, не уточнюючи, в чому саме полягають порушення.